File: bppML.cpp

package info (click to toggle)
bppsuite 2.4.1-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,116 kB
  • sloc: cpp: 3,867; sh: 65; makefile: 5
file content (747 lines) | stat: -rw-r--r-- 32,372 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
//
// File: bppML.cpp
// Created by: Julien Dutheil
// Created on: Dec Sat 03 16:41 2005
//

/*
   Copyright or © or Copr. Bio++ Development Team

   This software is a computer program whose purpose is to estimate
   phylogenies and evolutionary parameters from a dataset according to
   the maximum likelihood principle.

   This software is governed by the CeCILL  license under French law and
   abiding by the rules of distribution of free software.  You can  use,
   modify and/ or redistribute the software under the terms of the CeCILL
   license as circulated by CEA, CNRS and INRIA at the following URL
   "http://www.cecill.info".

   As a counterpart to the access to the source code and  rights to copy,
   modify and redistribute granted by the license, users are provided only
   with a limited warranty  and the software's author,  the holder of the
   economic rights,  and the successive licensors  have only  limited
   liability.

   In this respect, the user's attention is drawn to the risks associated
   with loading,  using,  modifying and/or developing or reproducing the
   software by the user in light of its specific status of free software,
   that may mean  that it is complicated to manipulate,  and  that  also
   therefore means  that it is reserved for developers  and  experienced
   professionals having in-depth computer knowledge. Users are therefore
   encouraged to load and test the software's suitability as regards their
   requirements in conditions enabling the security of their systems and/or
   data to be ensured and,  more generally, to use and operate it in the
   same conditions as regards security.

   The fact that you are presently reading this means that you have had
   knowledge of the CeCILL license and that you accept its terms.
 */

// From the STL:
#include <iostream>
#include <iomanip>
#include <limits>

using namespace std;

// From bpp-core:
#include <Bpp/Version.h>
#include <Bpp/Numeric/Prob/DiscreteDistribution.h>
#include <Bpp/Numeric/Prob/ConstantDistribution.h>
#include <Bpp/Numeric/DataTable.h>
#include <Bpp/Numeric/Matrix/MatrixTools.h>
#include <Bpp/Numeric/VectorTools.h>
#include <Bpp/Numeric/AutoParameter.h>
#include <Bpp/App/BppApplication.h>
#include <Bpp/App/ApplicationTools.h>
#include <Bpp/Io/FileTools.h>
#include <Bpp/Text/TextTools.h>
#include <Bpp/Text/KeyvalTools.h>

// From bpp-seq:
#include <Bpp/Seq/Alphabet/Alphabet.h>
#include <Bpp/Seq/Container/VectorSiteContainer.h>
#include <Bpp/Seq/Container/SiteContainerTools.h>
#include <Bpp/Seq/SiteTools.h>
#include <Bpp/Seq/App/SequenceApplicationTools.h>

// From bpp-phyl:
#include <Bpp/Phyl/Tree.h>
#include <Bpp/Phyl/Likelihood/RHomogeneousMixedTreeLikelihood.h>
#include <Bpp/Phyl/Likelihood/DRHomogeneousMixedTreeLikelihood.h>
#include <Bpp/Phyl/Likelihood/RNonHomogeneousMixedTreeLikelihood.h>
#include <Bpp/Phyl/Likelihood/DRNonHomogeneousTreeLikelihood.h>
#include <Bpp/Phyl/Likelihood/RASTools.h>
#include <Bpp/Phyl/PatternTools.h>
#include <Bpp/Phyl/App/PhylogeneticsApplicationTools.h>
#include <Bpp/Phyl/OptimizationTools.h>
#include <Bpp/Phyl/Model/SubstitutionModelSetTools.h>
#include <Bpp/Phyl/Model/MixedSubstitutionModel.h>
#include <Bpp/Phyl/Model/Protein/CoalaCore.h>
#include <Bpp/Phyl/Model/RateDistribution/ConstantRateDistribution.h>
#include <Bpp/Phyl/Model/FrequenciesSet/MvaFrequenciesSet.h>
#include <Bpp/Phyl/Io/Newick.h>

using namespace bpp;

/******************************************************************************/

void help()
{
  (*ApplicationTools::message << "__________________________________________________________________________").endLine();
  (*ApplicationTools::message << "bppml parameter1_name=parameter1_value parameter2_name=parameter2_value").endLine();
  (*ApplicationTools::message << "      ... param=option_file").endLine();
  (*ApplicationTools::message).endLine();
  (*ApplicationTools::message << "  Refer to the Bio++ Program Suite Manual for a list of available options.").endLine();
  (*ApplicationTools::message << "__________________________________________________________________________").endLine();
}

int main(int args, char** argv)
{
  cout << "******************************************************************" << endl;
  cout << "*       Bio++ Maximum Likelihood Computation, version " << BPP_VERSION << "      *" << endl;
  cout << "*                                                                *" << endl;
  cout << "* Authors: J. Dutheil                       Last Modif. " << BPP_REL_DATE << " *" << endl;
  cout << "*          B. Boussau                                            *" << endl;
  cout << "*          L. Guéguen                                            *" << endl;
  cout << "*          M. Groussin                                           *" << endl;
  cout << "******************************************************************" << endl;
  cout << endl;

  if (args == 1)
  {
    help();
    return 0;
  }

  try
  {
    BppApplication bppml(args, argv, "BppML");
    bppml.startTimer();

    Alphabet* alphabet = SequenceApplicationTools::getAlphabet(bppml.getParams(), "", false);
    unique_ptr<GeneticCode> gCode;
    CodonAlphabet* codonAlphabet = dynamic_cast<CodonAlphabet*>(alphabet);
    if (codonAlphabet) {
      string codeDesc = ApplicationTools::getStringParameter("genetic_code", bppml.getParams(), "Standard", "", true, true);
      ApplicationTools::displayResult("Genetic Code", codeDesc);
      
      gCode.reset(SequenceApplicationTools::getGeneticCode(codonAlphabet->getNucleicAlphabet(), codeDesc));
    }

    //////////////////////////////////////////////
    // DATA
    
    VectorSiteContainer* allSites = SequenceApplicationTools::getSiteContainer(alphabet, bppml.getParams());

    VectorSiteContainer* sites = SequenceApplicationTools::getSitesToAnalyse(*allSites, bppml.getParams(), "", true, false);
    delete allSites;

    ApplicationTools::displayResult("Number of sequences", TextTools::toString(sites->getNumberOfSequences()));
    ApplicationTools::displayResult("Number of sites", TextTools::toString(sites->getNumberOfSites()));


    /////////////////////////////////////////
    // TREE
    
    // Get the initial tree
    Tree* tree = 0;
    string initTreeOpt = ApplicationTools::getStringParameter("init.tree", bppml.getParams(), "user", "", false, 1);
    ApplicationTools::displayResult("Input tree", initTreeOpt);
    if (initTreeOpt == "user")
    {
      tree = PhylogeneticsApplicationTools::getTree(bppml.getParams());
      ApplicationTools::displayResult("Number of leaves", TextTools::toString(tree->getNumberOfLeaves()));
    }
    else if (initTreeOpt == "random")
    {
      vector<string> names = sites->getSequencesNames();
      tree = TreeTemplateTools::getRandomTree(names);
      tree->setBranchLengths(1.);
    }
    else throw Exception("Unknown init tree method.");

    // Try to write the current tree to file. This will be overwritten by the optimized tree,
    // but allow to check file existence before running optimization!
    PhylogeneticsApplicationTools::writeTree(*tree, bppml.getParams());

    // Setting branch lengths?
    string initBrLenMethod = ApplicationTools::getStringParameter("init.brlen.method", bppml.getParams(), "Input", "", true, 1);
    string cmdName;
    map<string, string> cmdArgs;
    KeyvalTools::parseProcedure(initBrLenMethod, cmdName, cmdArgs);
    if (cmdName == "Input")
    {
      // Is the root has to be moved to the midpoint position along the branch that contains it ? If no, do nothing!
      bool midPointRootBrLengths = ApplicationTools::getBooleanParameter("midpoint_root_branch", cmdArgs, false, "", true, 2);
      if(midPointRootBrLengths)
        TreeTools::constrainedMidPointRooting(*tree);
    }
    else if (cmdName == "Equal")
    {
      double value = ApplicationTools::getDoubleParameter("value", cmdArgs, 0.1, "", true, 2);
      if (value <= 0)
        throw Exception("Value for branch length must be superior to 0");
      ApplicationTools::displayResult("Branch lengths set to", value);
      tree->setBranchLengths(value);
    }
    else if (cmdName == "Clock")
    {
      TreeTools::convertToClockTree(*tree, tree->getRootId(), true);
    }
    else if (cmdName == "Grafen")
    {
      string grafenHeight = ApplicationTools::getStringParameter("height", cmdArgs, "input", "", true, 2);
      double h;
      if (grafenHeight == "input")
      {
        h = TreeTools::getHeight(*tree, tree->getRootId());
      }
      else
      {
        h = TextTools::toDouble(grafenHeight);
        if (h <= 0) throw Exception("Height must be positive in Grafen's method.");
      }
      ApplicationTools::displayResult("Total height", TextTools::toString(h));

      double rho = ApplicationTools::getDoubleParameter("rho", cmdArgs, 1., "", true, 2);
      ApplicationTools::displayResult("Grafen's rho", rho);
      TreeTools::computeBranchLengthsGrafen(*tree, rho);
      double nh = TreeTools::getHeight(*tree, tree->getRootId());
      tree->scaleTree(h / nh);
    }
    else throw Exception("Method '" + initBrLenMethod + "' unknown for computing branch lengths.");
    ApplicationTools::displayResult("Branch lengths", cmdName);

    string treeWIdPath = ApplicationTools::getAFilePath("output.tree_ids.file", bppml.getParams(), false, false, "", true, "none", 1);
    if (treeWIdPath != "none")
    {
      TreeTemplate<Node> ttree(*tree);
      vector<Node*> nodes = ttree.getNodes();
      for (size_t i = 0; i < nodes.size(); i++)
      {
        if (nodes[i]->isLeaf())
          nodes[i]->setName(TextTools::toString(nodes[i]->getId()) + "_" + nodes[i]->getName());
        else
          nodes[i]->setBranchProperty("NodeId", BppString(TextTools::toString(nodes[i]->getId())));
      }
      Newick treeWriter;
      treeWriter.enableExtendedBootstrapProperty("NodeId");
      ApplicationTools::displayResult("Writing tagged tree to", treeWIdPath);
      treeWriter.write(ttree, treeWIdPath);
      delete tree;
      cout << "BppML's done." << endl;
      exit(0);
    }


    /////////////////////////
    // MODEL  & LIKELIHOOD
    
    // Check if likelihood
    
    bool computeLikelihood = ApplicationTools::getBooleanParameter("compute.likelihood", bppml.getParams(), true, "", false, 1);
    if (!computeLikelihood)
    {
      delete alphabet;
      delete sites;
      delete tree;
      cout << "BppML's done. Bye." << endl;
      return 0;
    }



    DiscreteRatesAcrossSitesTreeLikelihood* tl;
    string nhOpt = ApplicationTools::getStringParameter("nonhomogeneous", bppml.getParams(), "no", "", true, 1);
    ApplicationTools::displayResult("Heterogeneous model", nhOpt);

    bool checkTree    = ApplicationTools::getBooleanParameter("input.tree.check_root", bppml.getParams(), true, "", true, 2);
    bool optimizeTopo = ApplicationTools::getBooleanParameter("optimization.topology", bppml.getParams(), false, "", true, 1);
    unsigned int nbBS = ApplicationTools::getParameter<unsigned int>("bootstrap.number", bppml.getParams(), 0, "", true, 1);

    TransitionModel*    model    = 0;
    SubstitutionModelSet* modelSet = 0;
    DiscreteDistribution* rDist    = 0;

    ////////////
    // If optimize topology
    
    if (optimizeTopo || nbBS > 0)
    {
      if (nhOpt != "no")
        throw Exception("Topology estimation with NH model not supported yet, sorry :(");
      model = PhylogeneticsApplicationTools::getTransitionModel(alphabet, gCode.get(), sites, bppml.getParams());
      if (model->getName() != "RE08") SiteContainerTools::changeGapsToUnknownCharacters(*sites);
      if (model->getNumberOfStates() >= 2 * model->getAlphabet()->getSize())
      {
        // Markov-modulated Markov model!
        rDist = new ConstantRateDistribution();
      }
      else
      {
        rDist = PhylogeneticsApplicationTools::getRateDistribution(bppml.getParams());
      }
      if (dynamic_cast<MixedSubstitutionModel*>(model) == 0)
        tl = new NNIHomogeneousTreeLikelihood(*tree, *sites, model, rDist, checkTree, true);
      else
        throw Exception("Topology estimation with Mixed model not supported yet, sorry :(");
    }

    //////////////////////
    // If not topology optimization

    
    ///// homogeneous modeling
    else if (nhOpt == "no")
    {
      model = PhylogeneticsApplicationTools::getTransitionModel(alphabet, gCode.get(), sites, bppml.getParams());
      if (model->getName() != "RE08") SiteContainerTools::changeGapsToUnknownCharacters(*sites);
      if (model->getNumberOfStates() >= 2 * model->getAlphabet()->getSize())
      {
        // Markov-modulated Markov model!
        rDist = new ConstantRateDistribution();
      }
      else
      {
        rDist = PhylogeneticsApplicationTools::getRateDistribution(bppml.getParams());
      }
      string recursion = ApplicationTools::getStringParameter("likelihood.recursion", bppml.getParams(), "simple", "", true, 1);
      ApplicationTools::displayResult("Likelihood recursion", recursion);
      if (recursion == "simple")
      {
        string compression = ApplicationTools::getStringParameter("likelihood.recursion_simple.compression", bppml.getParams(), "recursive", "", true, 2);
        ApplicationTools::displayResult("Likelihood data compression", compression);
        if (compression == "simple")
          if (dynamic_cast<MixedSubstitutionModel*>(model))
            tl = new RHomogeneousMixedTreeLikelihood(*tree, *sites, model, rDist, checkTree, true, false);
          else
            tl = new RHomogeneousTreeLikelihood(*tree, *sites, model, rDist, checkTree, true, false);

        else if (compression == "recursive")
          if (dynamic_cast<MixedSubstitutionModel*>(model) == 0)
            tl = new RHomogeneousTreeLikelihood(*tree, *sites, model, rDist, checkTree, true, true);
          else
            tl = new RHomogeneousMixedTreeLikelihood(*tree, *sites, model, rDist, checkTree, true, true);

        else throw Exception("Unknown likelihood data compression method: " + compression);
      }
      else if (recursion == "double")
      {
        if (dynamic_cast<MixedSubstitutionModel*>(model))
          tl = new DRHomogeneousMixedTreeLikelihood(*tree, *sites, model, rDist, checkTree);
        else
          tl = new DRHomogeneousTreeLikelihood(*tree, *sites, model, rDist, checkTree);
      }
      else throw Exception("Unknown recursion option: " + recursion);
    }

    
    ///// one per branch modeling
    else if (nhOpt == "one_per_branch")
    {
      model = PhylogeneticsApplicationTools::getTransitionModel(alphabet, gCode.get(), sites, bppml.getParams());
      if (model->getName() != "RE08") SiteContainerTools::changeGapsToUnknownCharacters(*sites);
      if (model->getNumberOfStates() >= 2 * model->getAlphabet()->getSize())
      {
        // Markov-modulated Markov model!
        rDist = new ConstantRateDistribution();
      }
      else
      {
        rDist = PhylogeneticsApplicationTools::getRateDistribution(bppml.getParams());
      }
      vector<double> rateFreqs;
      if (model->getNumberOfStates() != alphabet->getSize())
      {
        // Markov-Modulated Markov Model...
        unsigned int n = static_cast<unsigned int>(model->getNumberOfStates() / alphabet->getSize());
        rateFreqs = vector<double>(n, 1. / static_cast<double>(n)); // Equal rates assumed for now, may be changed later (actually, in the most general case,
                                                       // we should assume a rate distribution for the root also!!!
      }

      bool stationarity = ApplicationTools::getBooleanParameter("nonhomogeneous.stationarity", bppml.getParams(), false, "", false, 1);
      FrequenciesSet* rootFreqs = 0;
      std::map<std::string, std::string> aliasFreqNames;
      if (!stationarity)
      {
        
        rootFreqs = PhylogeneticsApplicationTools::getRootFrequenciesSet(alphabet, gCode.get(), sites, bppml.getParams(), aliasFreqNames, rateFreqs);
        stationarity = !rootFreqs;
        string freqDescription = ApplicationTools::getStringParameter("nonhomogeneous.root_freq", bppml.getParams(), "", "", true, 1);
        if (freqDescription == "MVAprotein")
        {
          if (dynamic_cast<CoalaCore*>(model))
          {
            dynamic_cast<MvaFrequenciesSet*>(rootFreqs)->setModelName("MVAprotein");
            dynamic_cast<MvaFrequenciesSet*>(rootFreqs)->initSet(dynamic_cast<CoalaCore*>(model)); 
          }
          else
            throw Exception("The MVAprotein frequencies set at the root can only be used if a COaLA model is used on branches.");
        }
      }
      ApplicationTools::displayBooleanResult("Stationarity assumed", stationarity);
   
      vector<string> globalParameters = ApplicationTools::getVectorParameter<string>("nonhomogeneous_one_per_branch.shared_parameters", bppml.getParams(), ',', "");
      for (size_t i = 0; i < globalParameters.size(); i++)
        ApplicationTools::displayResult("Global parameter", globalParameters[i]);
      modelSet = SubstitutionModelSetTools::createNonHomogeneousModelSet(model, rootFreqs, tree, aliasFreqNames, globalParameters);
      model = 0;

      string recursion = ApplicationTools::getStringParameter("likelihood.recursion", bppml.getParams(), "simple", "", true, 1);
      ApplicationTools::displayResult("Likelihood recursion", recursion);
      if (recursion == "simple")
      {
        if (dynamic_cast<MixedSubstitutionModelSet*>(modelSet)!=NULL)
          tl = new RNonHomogeneousMixedTreeLikelihood(*tree, *sites, dynamic_cast<MixedSubstitutionModelSet*>(modelSet), rDist, true, true);
        else
          tl = new RNonHomogeneousTreeLikelihood(*tree, *sites, modelSet, rDist, true, true);
      }
      else if (recursion == "double")
      {
        if (dynamic_cast<MixedSubstitutionModelSet*>(modelSet))
          throw Exception("Double recursion with non homogeneous mixed models is not implemented yet.");
            //            tl = new DRNonHomogeneousMixedTreeLikelihood(*tree, *sites, modelSet, rDist, true);
        else
          tl = new DRNonHomogeneousTreeLikelihood(*tree, *sites, modelSet, rDist, true);
      }
      else throw Exception("Unknown recursion option: " + recursion);
    }

    /////// hand made modeling
    else if (nhOpt == "general")
    {
      modelSet = PhylogeneticsApplicationTools::getSubstitutionModelSet(alphabet, gCode.get(), sites, bppml.getParams());

      if (modelSet->getModel(0)->getName() != "RE08") SiteContainerTools::changeGapsToUnknownCharacters(*sites);
      
      if (modelSet->getNumberOfStates() >= 2 * modelSet->getAlphabet()->getSize())
      {
        // Markov-modulated Markov model!
        rDist = new ConstantRateDistribution();
      }
      else
      {
        rDist = PhylogeneticsApplicationTools::getRateDistribution(bppml.getParams());
      }

      string recursion = ApplicationTools::getStringParameter("likelihood.recursion", bppml.getParams(), "simple", "", true, 1);
      ApplicationTools::displayResult("Likelihood recursion", recursion);
      if (recursion == "simple")
      {
        if (dynamic_cast<MixedSubstitutionModelSet*>(modelSet)!=NULL)
          tl = new RNonHomogeneousMixedTreeLikelihood(*tree, *sites, dynamic_cast<MixedSubstitutionModelSet*>(modelSet), rDist, true, true);
        else
          tl = new RNonHomogeneousTreeLikelihood(*tree, *sites, modelSet, rDist, true, true);
      }
      else if (recursion == "double")
        if (dynamic_cast<MixedSubstitutionModelSet*>(modelSet))
          throw Exception("Double recursion with non homogeneous mixed models is not implemented yet.");
            //            tl = new DRNonHomogeneousMixedTreeLikelihood(*tree, *sites, modelSet, rDist, true);
        else
          tl = new DRNonHomogeneousTreeLikelihood(*tree, *sites, modelSet, rDist, true);
      else throw Exception("Unknown recursion option: " + recursion);
    }
    else throw Exception("Unknown option for nonhomogeneous: " + nhOpt);

    tl->initialize();

    delete tree;

    //Listing parameters
    string paramNameFile = ApplicationTools::getAFilePath("output.parameter_names.file", bppml.getParams(), false, false, "", true, "none", 1);
    if (paramNameFile != "none") {
      ApplicationTools::displayResult("List parameters to", paramNameFile);
      ofstream pnfile(paramNameFile.c_str(), ios::out);
      ParameterList pl = tl->getParameters();
      for (size_t i = 0; i < pl.size(); ++i) {
        pnfile << pl[i].getName() << endl;
      }
      pnfile.close();
      cout << "BppML's done." << endl;
      exit(0);
    }

    //Check initial likelihood:
    double logL = tl->getValue();
    if (std::isinf(logL))
    {
      // This may be due to null branch lengths, leading to null likelihood!
      ApplicationTools::displayWarning("!!! Warning!!! Initial likelihood is zero.");
      ApplicationTools::displayWarning("!!! This may be due to branch length == 0.");
      ApplicationTools::displayWarning("!!! All null branch lengths will be set to 0.000001.");
      ParameterList pl = tl->getBranchLengthsParameters();
      for (unsigned int i = 0; i < pl.size(); i++)
      {
        if (pl[i].getValue() < 0.000001) pl[i].setValue(0.000001);
      }
      tl->matchParametersValues(pl);
      logL = tl->getValue();
    }
    ApplicationTools::displayResult("Initial log likelihood", TextTools::toString(-logL, 15));
    if (std::isinf(logL))
    {
      ApplicationTools::displayError("!!! Unexpected initial likelihood == 0.");
      if (codonAlphabet)
      {
        bool f = false;
        size_t s;
        for (size_t i = 0; i < sites->getNumberOfSites(); i++) {
          if (std::isinf(tl->getLogLikelihoodForASite(i))) {
            const Site& site = sites->getSite(i);
            s = site.size();
            for (size_t j = 0; j < s; j++) {
              if (gCode->isStop(site.getValue(j))) {
                (*ApplicationTools::error << "Stop Codon at site " << site.getPosition() << " in sequence " << sites->getSequence(j).getName()).endLine();
                f = true;
              }
            }
          }
        }
        if (f)
          exit(-1);
      }
      bool removeSaturated = ApplicationTools::getBooleanParameter("input.sequence.remove_saturated_sites", bppml.getParams(), false, "", true, 1);
      if (!removeSaturated) {
        ofstream debug ("DEBUG_likelihoods.txt", ios::out);
        for (size_t i = 0; i < sites->getNumberOfSites(); i++)
        {
          debug << "Position " << sites->getSite(i).getPosition() << " = " << tl->getLogLikelihoodForASite(i) << endl; 
        }
        debug.close();
        ApplicationTools::displayError("!!! Site-specific likelihood have been written in file DEBUG_likelihoods.txt .");
        ApplicationTools::displayError("!!! 0 values (inf in log) may be due to computer overflow, particularly if datasets are big (>~500 sequences).");
        ApplicationTools::displayError("!!! You may want to try input.sequence.remove_saturated_sites = yes to ignore positions with likelihood 0.");
        exit(1);
      } else {
        ApplicationTools::displayBooleanResult("Saturated site removal enabled", true);
        for (size_t i = sites->getNumberOfSites(); i > 0; --i) {
          if (std::isinf(tl->getLogLikelihoodForASite(i - 1))) {
            ApplicationTools::displayResult("Ignore saturated site", sites->getSite(i - 1).getPosition());
            sites->deleteSite(i - 1);
          }
        }
        ApplicationTools::displayResult("Number of sites retained", sites->getNumberOfSites());
        tl->setData(*sites);
        tl->initialize();
        logL = tl->getValue();
        if (std::isinf(logL)) {
          throw Exception("Likelihood is still 0 after saturated sites are removed! Looks like a bug...");
         }
        ApplicationTools::displayResult("Initial log likelihood", TextTools::toString(-logL, 15));
      }
    }

    tl = dynamic_cast<DiscreteRatesAcrossSitesTreeLikelihood*>(
      PhylogeneticsApplicationTools::optimizeParameters(tl, tl->getParameters(), bppml.getParams()));

    tree = new TreeTemplate<Node>(tl->getTree());
    PhylogeneticsApplicationTools::writeTree(*tree, bppml.getParams());

    // Write parameters to screen:
    ApplicationTools::displayResult("Log likelihood", TextTools::toString(-tl->getValue(), 15));
    ParameterList parameters = tl->getSubstitutionModelParameters();
    for (size_t i = 0; i < parameters.size(); i++)
    {
      ApplicationTools::displayResult(parameters[i].getName(), TextTools::toString(parameters[i].getValue()));
    }
    parameters = tl->getRateDistributionParameters();
    for (size_t i = 0; i < parameters.size(); i++)
    {
      ApplicationTools::displayResult(parameters[i].getName(), TextTools::toString(parameters[i].getValue()));
    }

    // Checking convergence:
    PhylogeneticsApplicationTools::checkEstimatedParameters(tl->getParameters());

    // Write parameters to file:
    string parametersFile = ApplicationTools::getAFilePath("output.estimates", bppml.getParams(), false, false, "none", 1);
    bool withAlias = ApplicationTools::getBooleanParameter("output.estimates.alias", bppml.getParams(), true, "", true, 0);

    ApplicationTools::displayResult("Output estimates to file", parametersFile);
    if (parametersFile != "none")
    {
      StlOutputStream out(new ofstream(parametersFile.c_str(), ios::out));
      out << "# Log likelihood = ";
      out.setPrecision(20) << (-tl->getValue());
      out.endLine();
      out << "# Number of sites = ";
      out.setPrecision(20) << sites->getNumberOfSites();
      out.endLine();
      out.endLine();
      out << "# Substitution model parameters:";
      out.endLine();
      if (modelSet)
      {
        modelSet->matchParametersValues(tl->getParameters());
        PhylogeneticsApplicationTools::printParameters(modelSet, out, 1, withAlias);
      }
      else
      {
        model->matchParametersValues(tl->getParameters());
        PhylogeneticsApplicationTools::printParameters(model, out, 1, withAlias);
      }
      out.endLine();
      (out << "# Rate distribution parameters:").endLine();
      rDist->matchParametersValues(tl->getParameters());
      PhylogeneticsApplicationTools::printParameters(rDist, out, withAlias);
    }

    // Getting posterior rate class distribution:
    DiscreteDistribution* prDist = RASTools::getPosteriorRateDistribution(*tl);
    ApplicationTools::displayMessage("\nPosterior rate distribution for dataset:\n");
    if (ApplicationTools::message) prDist->print(*ApplicationTools::message);
    ApplicationTools::displayMessage("\n");
    delete prDist;

    // Write infos to file:
    string infosFile = ApplicationTools::getAFilePath("output.infos", bppml.getParams(), false, false);
    if (infosFile != "none")
    {
      ApplicationTools::displayResult("Alignment information logfile", infosFile);
      ofstream out(infosFile.c_str(), ios::out);

      // Get the rate class with maximum posterior probability:
      vector<size_t> classes = tl->getRateClassWithMaxPostProbOfEachSite();

      // Get the posterior rate, i.e. rate averaged over all posterior probabilities:
      Vdouble rates = tl->getPosteriorRateOfEachSite();

      vector<string> colNames;
      colNames.push_back("Sites");
      colNames.push_back("is.complete");
      colNames.push_back("is.constant");
      colNames.push_back("lnL");
      colNames.push_back("rc");
      colNames.push_back("pr");
      vector<string> row(6);
      DataTable* infos = new DataTable(colNames);

      for (unsigned int i = 0; i < sites->getNumberOfSites(); i++)
      {
        double lnL = tl->getLogLikelihoodForASite(i);
        const Site* currentSite = &sites->getSite(i);
        int currentSitePosition = currentSite->getPosition();
        string isCompl = "NA";
        string isConst = "NA";
        try { isCompl = (SiteTools::isComplete(*currentSite) ? "1" : "0"); }
        catch(EmptySiteException& ex) {}
        try { isConst = (SiteTools::isConstant(*currentSite) ? "1" : "0"); }
        catch(EmptySiteException& ex) {}
        row[0] = (string("[" + TextTools::toString(currentSitePosition) + "]"));
        row[1] = isCompl;
        row[2] = isConst;
        row[3] = TextTools::toString(lnL);
        row[4] = TextTools::toString(classes[i]);
        row[5] = TextTools::toString(rates[i]);
        infos->addRow(row);
      }

      DataTable::write(*infos, out, "\t");

      delete infos;
    }


    // Bootstrap:
    string optimizeClock = ApplicationTools::getStringParameter("optimization.clock", bppml.getParams(), "None", "", true, 1);
    if (nbBS > 0 && optimizeClock != "None")
    {
      ApplicationTools::displayError("Bootstrap is not supported with clock trees.");
    }
    if (nbBS > 0 && optimizeClock == "None")
    {
      ApplicationTools::displayResult("Number of bootstrap samples", TextTools::toString(nbBS));
      bool approx = ApplicationTools::getBooleanParameter("bootstrap.approximate", bppml.getParams(), true, "", true, 2);
      ApplicationTools::displayBooleanResult("Use approximate bootstrap", approx);
      bool bootstrapVerbose = ApplicationTools::getBooleanParameter("bootstrap.verbose", bppml.getParams(), false, "", true, 2);

      const Tree* initTree = tree;
      if (!bootstrapVerbose) bppml.getParam("optimization.verbose") = "0";
      bppml.getParam("optimization.profiler") = "none";
      bppml.getParam("optimization.messageHandler") = "none";
      if (!optimizeTopo)
      {
        bppml.getParam("optimization.topology") = "yes";
        tl = dynamic_cast<NNIHomogeneousTreeLikelihood*>(
            PhylogeneticsApplicationTools::optimizeParameters(tl, tl->getParameters(), bppml.getParams(), "", true, false));
        initTree = &tl->getTree();
      }

      string bsTreesPath = ApplicationTools::getAFilePath("bootstrap.output.file", bppml.getParams(), false, false);
      ofstream* out = 0;
      if (bsTreesPath != "none")
      {
        ApplicationTools::displayResult("Bootstrap trees stored in file", bsTreesPath);
        out = new ofstream(bsTreesPath.c_str(), ios::out);
      }
      Newick newick;
      ParameterList paramsToIgnore = tl->getSubstitutionModelParameters();
      paramsToIgnore.addParameters(tl->getRateDistributionParameters());

      ApplicationTools::displayTask("Bootstrapping", true);
      vector<Tree*> bsTrees(nbBS);
      for (unsigned int i = 0; i < nbBS; i++)
      {
        ApplicationTools::displayGauge(i, nbBS - 1, '=');
        VectorSiteContainer* sample = SiteContainerTools::bootstrapSites(*sites);
        if (!approx)
        {
          model->setFreqFromData(*sample);
        }

        if (dynamic_cast<MixedSubstitutionModel*>(model) != NULL)
          throw Exception("Bootstrap estimation with Mixed model not supported yet, sorry :(");

        NNIHomogeneousTreeLikelihood* tlRep = new NNIHomogeneousTreeLikelihood(*initTree, *sample, model, rDist, true, false);
        tlRep->initialize();
        ParameterList parametersRep = tlRep->getParameters();
        if (approx)
        {
          parametersRep.deleteParameters(paramsToIgnore.getParameterNames());
        }
        tlRep = dynamic_cast<NNIHomogeneousTreeLikelihood*>(
          PhylogeneticsApplicationTools::optimizeParameters(tlRep, parametersRep, bppml.getParams(), "", true, false));
        bsTrees[i] = new TreeTemplate<Node>(tlRep->getTree());
        if (out && i == 0) newick.write(*bsTrees[i], bsTreesPath, true);
        if (out && i >  0) newick.write(*bsTrees[i], bsTreesPath, false);
        delete tlRep;
        delete sample;
      }
      if (out) out->close();
      if (out) delete out;
      ApplicationTools::displayTaskDone();


      ApplicationTools::displayTask("Compute bootstrap values");
      TreeTools::computeBootstrapValues(*tree, bsTrees);
      ApplicationTools::displayTaskDone();
      for (unsigned int i = 0; i < nbBS; i++)
      {
        delete bsTrees[i];
      }

      // Write resulting tree:
      PhylogeneticsApplicationTools::writeTree(*tree, bppml.getParams());
    }


    delete alphabet;
    delete sites;
    if (model) delete model;
    if (modelSet) delete modelSet;
    delete rDist;
    delete tl;
    delete tree;
    bppml.done();
  }
  catch (exception& e)
  {
    cout << e.what() << endl;
    return 1;
  }

  return 0;
}