1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
// Brain Party
// Copyright (C) 2010 Paul Hudson (http://www.tuxradar.com/brainparty)
// Brain Party is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#include "perfectpaths.h"
#include "Minigame.h"
BPMiniGame_PerfectPaths::BPMiniGame_PerfectPaths(BPGame* game) : BPMiniGame(game) {
sfcBackground = TheGame->LoadBitmap("perfectpaths", 320, 416);
sfcPerfect = TheGame->LoadBitmap("perfect", 320, 92);
sfcOK = TheGame->LoadBitmap("ok", 320, 92);
CurrentScore = BestScore = TotalDiff = TimeStarted = CurrentLevel = 0;
sfcScore = NULL;
SetScore();
GameTitle = "Perfect Paths";
GameHelp = "Tap squares to make a path from the top white square to the bottom one, using the route with the lowest numbers along the way, then press Go when you're ready to advance. You can't move diagonally!";
GameHelp2 = "Each square has a number on signifying how \"hard\" that square is to move over, and that number is used to calculate the total move difficulty. At the bottom of the screen you'll see the best possible score that you can get, along with your current score.";
MiniGameType = LIVELY;
GameState = WAITING;
LoNumbers.Add(NULL);
LoNumbers.Add(TheGame->LoadBitmap("pp_1_lo", 44, 44));
LoNumbers.Add(NULL);
LoNumbers.Add(TheGame->LoadBitmap("pp_3_lo", 44, 44));
LoNumbers.Add(NULL);
LoNumbers.Add(TheGame->LoadBitmap("pp_5_lo", 44, 44));
LoNumbers.Add(NULL);
LoNumbers.Add(TheGame->LoadBitmap("pp_7_lo", 44, 44));
LoNumbers.Add(NULL);
LoNumbers.Add(TheGame->LoadBitmap("pp_9_lo", 44, 44));
HiNumbers.Add(NULL);
HiNumbers.Add(TheGame->LoadBitmap("pp_1_hi", 44, 44));
HiNumbers.Add(NULL);
HiNumbers.Add(TheGame->LoadBitmap("pp_3_hi", 44, 44));
HiNumbers.Add(NULL);
HiNumbers.Add(TheGame->LoadBitmap("pp_5_hi", 44, 44));
HiNumbers.Add(NULL);
HiNumbers.Add(TheGame->LoadBitmap("pp_7_hi", 44, 44));
HiNumbers.Add(NULL);
HiNumbers.Add(TheGame->LoadBitmap("pp_9_hi", 44, 44));
LevelUp();
}
BPMiniGame_PerfectPaths::~BPMiniGame_PerfectPaths() {
SAFE_DELETE(sfcBackground);
StartPositions.Clear();
EndPositions.Clear();
LoNumbers.Clear();
HiNumbers.Clear();
// SAFE_DELETE(StartPos);
// SAFE_DELETE(EndPos);
SAFE_DELETE(sfcPerfect);
SAFE_DELETE(sfcOK);
Squares.Clear();
SAFE_DELETE(sfcScore);
}
void BPMiniGame_PerfectPaths::Start() {
TimeStarted = TheGame->TickCount;
}
int BPMiniGame_PerfectPaths::GetWeight() {
float TimePassed = (TheGame->TickCount - TimeStarted) / 1000.0f;
return MinMax(520 - (TotalDiff * 5) - round(TimePassed));
}
void BPMiniGame_PerfectPaths::Render() {
TheGame->DrawImage(sfcBackground, 0, 0);
for (int i = 0; i < Squares.Count; ++i) {
BPMiniGame_PerfectPaths_Square* square = Squares[i];
if (square == EndPos || square == StartPos) {
TheGame->FillRectangle((*TheGame->White), square->XPos, square->YPos, 44, 44);
} else {
if (Moves.Contains(square)) {
if (square != StartPos) TheGame->DrawImage(HiNumbers[square->Difficulty], square->XPos, square->YPos);
} else {
TheGame->DrawImage(LoNumbers[square->Difficulty], square->XPos, square->YPos);
}
}
}
TheGame->DrawString(sfcScore, WHITE, 6, 377);
if (GameState == CORRECT) {
switch (LastDiff) {
case 0:
RenderPerfect();
break;
case 1:
case 2:
RenderCorrect();
break;
case 3:
case 4:
case 5:
RenderOK();
break;
default:
RenderWrong();
break;
}
}
}
void BPMiniGame_PerfectPaths::Tick() {
if (GameState == CORRECT && LastStateChange + 700 < TheGame->TickCount) {
LevelUp();
}
if (CurrentLevel >= 6) {
Success();
}
}
void BPMiniGame_PerfectPaths::OnMouseUp() {
if (GameState != WAITING) return;
if (TheGame->PointOverRect(TouchEvent.X, TouchEvent.Y, 187, 368, 137, 47)) {
CheckResult();
} else if (TheGame->PointOverRect(TouchEvent.X, TouchEvent.Y, 0, 0, 320, 364)) {
// making a move
for (int i = 0; i < Squares.Count; ++i) {
BPMiniGame_PerfectPaths_Square* square = Squares[i];
if (TheGame->PointOverRect(TouchEvent.X, TouchEvent.Y, square->XPos, square->YPos, 44, 44)) {
if (square == StartPos || square == EndPos) continue;
if (Moves.Contains(square)) {
if (Moves[Moves.Count - 1] == square) {
// they can only remove a square if it was the last one to be added
Moves.Remove(square);
CalculateOurScore();
} else {
MessageBox::Show("You can only remove the last position in your path.", "Oops!");
}
} else {
BPMiniGame_PerfectPaths_Square* last = Moves[Moves.Count - 1];
if (CanMove(square, last)) {
Moves.Add(square);
CalculateOurScore();
} else {
if (Moves.Count == 1) {
MessageBox::Show("You can only move to a square that's horizontally or vertically next to your previous move, starting from the top white square.", "Oops!");
} else {
MessageBox::Show("You can only move to a square that's horizontally or vertically next to your previous move.", "Oops!");
}
}
}
break;
}
}
} else if (TheGame->PointOverRect(TouchEvent.X, TouchEvent.Y, 0, 273, 72, 18)) {
MessageBox::Show("This shows the current number of moves it will take to get from the top to the bottom. The closer this is to the Best score, the more points you get.", GameTitle);
} else if (TheGame->PointOverRect(TouchEvent.X, TouchEvent.Y, 80, 273, 72, 18)) {
MessageBox::Show("This shows the best possible number of moves between the top white square and the bottom white square. If you want to get the highest score, you must match this every time.", GameTitle);
}
}
void BPMiniGame_PerfectPaths::OnMouseMove() {
}
void BPMiniGame_PerfectPaths::OnMouseDown() {
}
void BPMiniGame_PerfectPaths::CalculateOurScore() {
CurrentScore = 0;
for (int i = 0; i < Moves.Count; ++i) {
BPMiniGame_PerfectPaths_Square* square = Moves[i];
if (square == StartPos) continue;
CurrentScore += square->Difficulty;
}
SetScore();
}
void BPMiniGame_PerfectPaths::CheckResult() {
BPMiniGame_PerfectPaths_Square* last = Moves[Moves.Count - 1];
if (CanMove(EndPos, last)) {
LastDiff = abs(BestScore - CurrentScore);
TotalDiff += LastDiff;
GameState = CORRECT;
LastStateChange = TheGame->TickCount;
switch (LastDiff) {
case 0:
case 1:
case 2:
case 3:
TheGame->PlaySound("correct");
break;
default:
TheGame->PlaySound("down");
break;
}
} else {
MessageBox::Show("That doesn't work - your path needs to connect the white square at the top with the white square at the bottom!", "Try again");
}
}
void BPMiniGame_PerfectPaths::LevelUp() {
++CurrentLevel;
CurrentScore = 0;
if (CurrentLevel >= 6) {
return;
}
Squares.Clear();
Moves.Clear();
MoveSquares.Clear();
int max_difficulty = 7;
switch (CurrentLevel) {
case 1:
max_difficulty = 7;
break;
case 2:
max_difficulty = 8;
break;
case 3:
max_difficulty = 9;
break;
case 4:
max_difficulty = 11;
break;
case 5:
max_difficulty = 12;
break;
}
for (int i = 0; i < 7; ++i) {
for (int j = 0; j < 8; ++j) {
BPMiniGame_PerfectPaths_Square* square = new BPMiniGame_PerfectPaths_Square();
square->Difficulty = TheGame->RandomRange(0, max_difficulty);
switch (square->Difficulty) {
case 0:
case 1:
case 2:
square->Difficulty = 1;
square->DifficultyStr = "1";
square->Col = TheGame->Green;
break;
case 3:
case 4:
case 5:
case 6:
square->Difficulty = 3;
square->DifficultyStr = "3";
square->Col = TheGame->Orange;
break;
case 7:
case 8:
case 9:
square->Difficulty = 5;
square->DifficultyStr = "5";
square->Col = TheGame->Red;
break;
case 10:
case 11:
square->Difficulty = 7;
square->DifficultyStr = "7";
square->Col = TheGame->DarkRed;
break;
case 12:
square->Difficulty = 9;
square->DifficultyStr = "9";
square->Col = TheGame->DarkGrey;
break;
}
square->X = i;
square->Y = j;
square->XPos = 6 + (i * 44);
square->YPos = 6 + (j * 44);
square->Pos = Squares.Count;
Squares.Add(square);
}
}
StartPositions.Clear();
EndPositions.Clear();
if (TheGame->RandomRange(0, 1) == 0) {
StartPositions.Add(8);
StartPositions.Add(16);
StartPositions.Add(24);
EndPositions.Add(39);
EndPositions.Add(47);
EndPositions.Add(55);
} else {
StartPositions.Add(32);
StartPositions.Add(40);
StartPositions.Add(48);
EndPositions.Add(7);
EndPositions.Add(15);
EndPositions.Add(23);
}
StartPositions.Shuffle();
EndPositions.Shuffle();
StartPos = Squares[StartPositions[0]];
EndPos = Squares[EndPositions[0]];
Moves.Add(StartPos);
CalculateBestMove();
SetScore();
GameState = WAITING;
LastStateChange = TheGame->TickCount;
}
void BPMiniGame_PerfectPaths::CalculateBestMove() {
MoveSquares.Add(StartPos);
StartPos->MoveCalc = 0;
while (MoveSquares.Count != 0) {
BPMiniGame_PerfectPaths_Square* square = MoveSquares[0];
MoveSquares.RemoveAt(0);
FloodFill(square);
}
int probable_best = 999;
// now we need to figure out what the best score was: what were the lowest numbers around the end position?
if (EndPos->X > 0) probable_best = Squares[EndPos->Pos - 8]->MoveCalc;
if (EndPos->X < 6 && Squares[EndPos->Pos + 8]->MoveCalc < probable_best) probable_best = Squares[EndPos->Pos + 8]->MoveCalc;
if (EndPos->Y > 0 && Squares[EndPos->Pos - 1]->MoveCalc < probable_best) probable_best = Squares[EndPos->Pos - 1]->MoveCalc;
if (EndPos->Y < 6 && Squares[EndPos->Pos + 1]->MoveCalc < probable_best) probable_best = Squares[EndPos->Pos + 1]->MoveCalc;
BestScore = probable_best;
}
void BPMiniGame_PerfectPaths::FloodFill(BPMiniGame_PerfectPaths_Square* square) {
int Plus1 = square->Pos + 1;
int Minus1 = square->Pos - 1;
int Plus10 = square->Pos + 8;
int Minus10 = square->Pos - 8;
if (square->X > 0) {
// check square to the left
if (square->MoveCalc + Squares[Minus10]->Difficulty < Squares[Minus10]->MoveCalc) {
Squares[Minus10]->MoveCalc = square->MoveCalc + Squares[Minus10]->Difficulty;
MoveSquares.Add(Squares[Minus10]);
}
}
if (square->X < 6) {
// check square to the right
if (square->MoveCalc + Squares[Plus10]->Difficulty < Squares[Plus10]->MoveCalc) {
Squares[Plus10]->MoveCalc = square->MoveCalc + Squares[Plus10]->Difficulty;
MoveSquares.Add(Squares[Plus10]);
}
}
if (square->Y > 0) {
// check square above
if (square->MoveCalc + Squares[Minus1]->Difficulty < Squares[Minus1]->MoveCalc) {
Squares[Minus1]->MoveCalc = square->MoveCalc + Squares[Minus1]->Difficulty;
MoveSquares.Add(Squares[Minus1]);
}
}
if (square->Y < 7) {
// check square below
if (square->MoveCalc + Squares[Plus1]->Difficulty < Squares[Plus1]->MoveCalc) {
Squares[Plus1]->MoveCalc = square->MoveCalc + Squares[Plus1]->Difficulty;
MoveSquares.Add(Squares[Plus1]);
}
}
}
bool BPMiniGame_PerfectPaths::CanMove(BPMiniGame_PerfectPaths_Square* square1, BPMiniGame_PerfectPaths_Square* square2) {
// return true if this square is adjacent to the last move square
return (abs(square1->X - square2->X) + abs(square1->Y - square2->Y)) == 1;
}
void BPMiniGame_PerfectPaths::SetScore() {
ostringstream score;
score << "Move: " << CurrentScore << " Best: " << BestScore;
TheGame->AllocString(&sfcScore, score.str().c_str(), NORMAL, 239, 47, LEFT);
}
void BPMiniGame_PerfectPaths::RenderPerfect() {
TheGame->DrawImage(sfcPerfect, 0, 172);
}
void BPMiniGame_PerfectPaths::RenderOK() {
TheGame->DrawImage(sfcOK, 0, 172);
}
|