1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
Simulation principles
---------------------
The following paper outlines the principles of Brian simulation: Goodman, D and
Brette R (2008),
`Brian: a simulator for spiking neural networks in Python <http://www.frontiersin.org/neuroinformatics/paper/10.3389/neuro.11/005.2008/>`__,
Front. Neuroinform. doi:10.3389/neuro.11.005.2008.
This one describes the simulation algorithms, which are based on vectorisation:
Brette R and Goodman, DF,
`Vectorised algorithms for spiking neural network simulation <http://www.briansimulator.org/WordPress/wp-content/uploads/2010/10/algorithms-preprint.pdf>`__,
Neural Computation (in press).
Sample script
~~~~~~~~~~~~~
Below we present a Brian script, and a translation into pure Python to
illustrate the basic principles of Brian simulations.
Original Brian script
.....................
A script in Brian::
'''
Very short example program.
'''
from brian import *
from time import time
N=10000 # number of neurons
Ne=int(N*0.8) # excitatory neurons
Ni=N-Ne # inhibitory neurons
p=80./N
duration=1000*ms
eqs='''
dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt
'''
P=NeuronGroup(N,model=eqs,
threshold=-50*mV,reset=-60*mV)
P.v=-60*mV+10*mV*rand(len(P))
Pe=P.subgroup(Ne)
Pi=P.subgroup(Ni)
Ce=Connection(Pe,P,'ge',weight=1.62*mV,sparseness=p)
Ci=Connection(Pi,P,'gi',weight=-9*mV,sparseness=p)
M=SpikeMonitor(P)
trace=StateMonitor(P,'v',record=0)
t1=time()
run(1*second)
t2=time()
print "Simulated in",t2-t1,"s"
print len(M.spikes),"spikes"
subplot(211)
raster_plot(M)
subplot(212)
plot(trace.times/ms,trace[0]/mV)
show()
Equivalent in pure Python
.........................
The script above translated into pure Python (no Brian)::
'''
A pure Python version of the CUBA example, that reproduces basic Brian principles.
'''
from pylab import *
from time import time
from random import sample
from scipy import random as scirandom
"""
Parameters
"""
N=10000 # number of neurons
Ne=int(N*0.8) # excitatory neurons
Ni=N-Ne # inhibitory neurons
mV=ms=1e-3 # units
dt=0.1*ms # timestep
taum=20*ms # membrane time constant
taue=5*ms
taui=10*ms
p=80.0/N # connection probability (80 synapses per neuron)
Vt=-1*mV # threshold = -50+49
Vr=-11*mV # reset = -60+49
we=60*0.27/10 # excitatory weight
wi=-20*4.5/10 # inhibitory weight
duration=1000*ms
"""
Equations
---------
eqs='''
dv/dt = (ge+gi-(v+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms) : volt
dgi/dt = -gi/(10*ms) : volt
'''
This is a linear system, so each update corresponds to
multiplying the state matrix by a (3,3) 'update matrix'
"""
# Update matrix
A=array([[exp(-dt/taum),0,0],
[taue/(taum-taue)*(exp(-dt/taum)-exp(-dt/taue)),exp(-dt/taue),0],
[taui/(taum-taui)*(exp(-dt/taum)-exp(-dt/taui)),0,exp(-dt/taui)]]).T
"""
State variables
---------------
P=NeuronGroup(4000,model=eqs,
threshold=-50*mV,reset=-60*mV)
"""
S=zeros((3,N))
"""
Initialisation
--------------
P.v=-60*mV+10*mV*rand(len(P))
"""
S[0,:]=rand(N)*(Vt-Vr)+Vr # Potential: uniform between reset and threshold
"""
Connectivity matrices
---------------------
Pe=P.subgroup(3200) # excitatory group
Pi=P.subgroup(800) # inhibitory group
Ce=Connection(Pe,P,'ge',weight=1.62*mV,sparseness=p)
Ci=Connection(Pi,P,'gi',weight=-9*mV,sparseness=p)
"""
We_target=[]
We_weight=[]
for _ in range(Ne):
k=scirandom.binomial(N,p,1)[0]
target=sample(xrange(N),k)
target.sort()
We_target.append(target)
We_weight.append([1.62*mV]*k)
Wi_target=[]
Wi_weight=[]
for _ in range(Ni):
k=scirandom.binomial(N,p,1)[0]
target=sample(xrange(N),k)
target.sort()
Wi_target.append(target)
Wi_weight.append([-9*mV]*k)
"""
Spike monitor
-------------
M=SpikeMonitor(P)
will contain a list of (i,t), where neuron i spiked at time t.
"""
spike_monitor=[] # Empty list of spikes
"""
State monitor
-------------
trace=StateMonitor(P,'v',record=0) # record only neuron 0
"""
trace=[] # Will contain v(t) for each t (for neuron 0)
"""
Simulation
----------
run(duration)
"""
t1=time()
t=0*ms
while t<duration:
# STATE UPDATES
S[:]=dot(A,S)
# Threshold
all_spikes=(S[0,:]>Vt).nonzero()[0] # List of neurons that meet threshold condition
# PROPAGATION OF SPIKES
# Excitatory neurons
spikes=(S[0,:Ne]>Vt).nonzero()[0] # In Brian we actually use bisection to speed it up
for i in spikes:
S[1,We_target[i]]+=We_weight[i]
# Inhibitory neurons
spikes=(S[0,Ne:N]>Vt).nonzero()[0]
for i in spikes:
S[2,Wi_target[i]]+=Wi_weight[i]
# Reset neurons after spiking
S[0,all_spikes]=Vr # Reset membrane potential
# Spike monitor
spike_monitor+=[(i,t) for i in all_spikes]
# State monitor
trace.append(S[0,0])
t+=dt
t2=time()
print "Simulated in",t2-t1,"s"
print len(spike_monitor),"spikes"
"""
Plot
----
subplot(211)
raster_plot(M)
subplot(212)
plot(trace.times/ms,trace[0]/mV)
show()
Here we cheat a little.
"""
from brian import raster_plot
class M:
pass
M.spikes=spike_monitor
subplot(211)
raster_plot(M)
subplot(212)
plot(arange(len(trace))*dt/ms,array(trace)/mV)
show()
|