File: examples-synapses_CUBA.txt

package info (click to toggle)
brian 1.4.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, stretch
  • size: 23,436 kB
  • sloc: python: 68,707; cpp: 29,040; ansic: 5,182; sh: 111; makefile: 61
file content (86 lines) | stat: -rw-r--r-- 2,156 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
.. currentmodule:: brian

.. index::
   pair: example usage; NeuronGroup
   pair: example usage; run
   pair: example usage; PopulationRateMonitor
   pair: example usage; plot
   pair: example usage; PopulationSpikeCounter
   pair: example usage; show
   pair: example usage; Synapses
   pair: example usage; Equations

.. _example-synapses_CUBA:

Example: CUBA (synapses)
========================

CUBA example with delays.

Connection (no delay): 3.5 s
DelayConnection: 5.7 s
Synapses (with precomputed offsets): 6.6 s # 6.9 s
Synapses with weave: 6.4 s
Synapses with zero delays: 5.2 s

::

    
    from brian import *
    import time
    
    start_time = time.time()
    taum = 20 * ms
    taue = 5 * ms
    taui = 10 * ms
    Vt = -50 * mV
    Vr = -60 * mV
    El = -49 * mV
    
    eqs = Equations('''
    dv/dt  = (ge+gi-(v-El))/taum : volt
    dge/dt = -ge/taue : volt
    dgi/dt = -gi/taui : volt
    ''')
    
    P = NeuronGroup(4000, model=eqs, threshold=Vt, reset=Vr, refractory=5 * ms)
    P.v = Vr
    P.ge = 0 * mV
    P.gi = 0 * mV
    
    Pe = P.subgroup(3200)
    Pi = P.subgroup(800)
    we = (60 * 0.27 / 10) * mV # excitatory synaptic weight (voltage)
    wi = (-20 * 4.5 / 10) * mV # inhibitory synaptic weight
    
    Se = Synapses(Pe, P, model = 'w : 1', pre = 'ge += we')
    Si = Synapses(Pi, P, model = 'w : 1', pre = 'gi += wi')
    Se[:,:]=0.02
    Si[:,:]=0.02
    Se.delay='rand()*ms'
    Si.delay='rand()*ms'
    
    P.v = Vr + rand(len(P)) * (Vt - Vr)
    
    # Record the number of spikes
    Me = PopulationSpikeCounter(Pe)
    Mi = PopulationSpikeCounter(Pi)
    # A population rate monitor
    M = PopulationRateMonitor(P)
    
    print "Network construction time:", time.time() - start_time, "seconds"
    print len(P), "neurons in the network"
    print "Simulation running..."
    run(1 * msecond)
    start_time = time.time()
    
    run(1 * second)
    
    duration = time.time() - start_time
    print "Simulation time:", duration, "seconds"
    print Me.nspikes, "excitatory spikes"
    print Mi.nspikes, "inhibitory spikes"
    plot(M.times / ms, M.smooth_rate(2 * ms, 'gaussian'))
    show()