1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
"""
Base class for generating code in different programming languages, gives the
methods which should be overridden to implement a new language.
"""
from brian2.codegen.permutation_analysis import (
OrderDependenceError,
check_for_order_independence,
)
from brian2.codegen.translation import make_statements
from brian2.core.functions import Function
from brian2.core.variables import ArrayVariable
from brian2.utils.logger import get_logger
from brian2.utils.stringtools import get_identifiers
__all__ = ["CodeGenerator"]
logger = get_logger(__name__)
class CodeGenerator:
"""
Base class for all languages.
See definition of methods below.
TODO: more details here
"""
# Subclasses should override this
class_name = ""
def __init__(
self,
variables,
variable_indices,
owner,
iterate_all,
codeobj_class,
name,
template_name,
override_conditional_write=None,
allows_scalar_write=False,
):
# We have to do the import here to avoid circular import dependencies.
from brian2.devices.device import get_device
self.device = get_device()
self.variables = variables
self.variable_indices = variable_indices
self.func_name_replacements = {}
for varname, var in variables.items():
if isinstance(var, Function):
if codeobj_class in var.implementations:
impl_name = var.implementations[codeobj_class].name
if impl_name is not None:
self.func_name_replacements[varname] = impl_name
self.iterate_all = iterate_all
self.codeobj_class = codeobj_class
self.owner = owner
if override_conditional_write is None:
self.override_conditional_write = set()
else:
self.override_conditional_write = set(override_conditional_write)
self.allows_scalar_write = allows_scalar_write
self.name = name
self.template_name = template_name
# Gather the names of functions that should get an additional
# "_vectorisation_idx" argument in the generated code. Take care
# of storing their translated name (e.g. "_rand" instead of "rand")
# if necessary
self.auto_vectorise = {
self.func_name_replacements.get(name, name)
for name in self.variables
if getattr(self.variables[name], "auto_vectorise", False)
}
@staticmethod
def get_array_name(var, access_data=True):
"""
Get a globally unique name for a `ArrayVariable`.
Parameters
----------
var : `ArrayVariable`
The variable for which a name should be found.
access_data : bool, optional
For `DynamicArrayVariable` objects, specifying `True` here means the
name for the underlying data is returned. If specifying `False`,
the name of object itself is returned (e.g. to allow resizing).
Returns
-------
name : str
A uniqe name for `var`.
"""
# We have to do the import here to avoid circular import dependencies.
from brian2.devices.device import get_device
device = get_device()
return device.get_array_name(var, access_data=access_data)
def translate_expression(self, expr):
"""
Translate the given expression string into a string in the target
language, returns a string.
"""
raise NotImplementedError
def translate_statement(self, statement):
"""
Translate a single line `Statement` into the target language, returns
a string.
"""
raise NotImplementedError
def determine_keywords(self):
"""
A dictionary of values that is made available to the templated. This is
used for example by the `CPPCodeGenerator` to set up all the supporting
code
"""
return {}
def translate_one_statement_sequence(self, statements, scalar=False):
raise NotImplementedError
def translate_statement_sequence(self, scalar_statements, vector_statements):
"""
Translate a sequence of `Statement` into the target language, taking
care to declare variables, etc. if necessary.
Returns a tuple ``(scalar_code, vector_code, kwds)`` where
``scalar_code`` is a list of the lines of code executed before the inner
loop, ``vector_code`` is a list of the lines of code in the inner
loop, and ``kwds`` is a dictionary of values that is made available to
the template.
"""
scalar_code = {}
vector_code = {}
for name, block in scalar_statements.items():
scalar_code[name] = self.translate_one_statement_sequence(
block, scalar=True
)
for name, block in vector_statements.items():
vector_code[name] = self.translate_one_statement_sequence(
block, scalar=False
)
kwds = self.determine_keywords()
return scalar_code, vector_code, kwds
def array_read_write(self, statements):
"""
Helper function, gives the set of ArrayVariables that are read from and
written to in the series of statements. Returns the pair read, write
of sets of variable names.
"""
variables = self.variables
variable_indices = self.variable_indices
read = set()
write = set()
for stmt in statements:
ids = get_identifiers(stmt.expr)
# if the operation is inplace this counts as a read.
if stmt.inplace:
ids.add(stmt.var)
read = read.union(ids)
if stmt.scalar or variable_indices[stmt.var] == "0":
if stmt.op != ":=" and not self.allows_scalar_write:
raise SyntaxError(
f"Writing to scalar variable {stmt.var} not allowed in this"
" context."
)
for name in ids:
if (
name in variables
and isinstance(variables[name], ArrayVariable)
and not (
variables[name].scalar or variable_indices[name] == "0"
)
):
raise SyntaxError(
"Cannot write to scalar variable "
f"'{stmt.var}' with an expression "
f"referring to vector variable '{name}'"
)
write.add(stmt.var)
read = {
varname
for varname, var in list(variables.items())
if isinstance(var, ArrayVariable) and varname in read
}
write = {
varname
for varname, var in list(variables.items())
if isinstance(var, ArrayVariable) and varname in write
}
# Gather the indices stored as arrays (ignore _idx which is special)
indices = set()
indices |= {
variable_indices[varname]
for varname in read
if not variable_indices[varname] in ("_idx", "0")
and isinstance(variables[variable_indices[varname]], ArrayVariable)
}
indices |= {
variable_indices[varname]
for varname in write
if not variable_indices[varname] in ("_idx", "0")
and isinstance(variables[variable_indices[varname]], ArrayVariable)
}
# don't list arrays that are read explicitly and used as indices twice
read -= indices
return read, write, indices
def get_conditional_write_vars(self):
"""
Helper function, returns a dict of mappings ``(varname, condition_var_name)`` indicating that
when ``varname`` is written to, it should only be when ``condition_var_name`` is ``True``.
"""
conditional_write_vars = {}
for varname, var in list(self.variables.items()):
if getattr(var, "conditional_write", None) is not None:
cvar = var.conditional_write
cname = cvar.name
if cname not in self.override_conditional_write:
conditional_write_vars[varname] = cname
return conditional_write_vars
def arrays_helper(self, statements):
"""
Combines the two helper functions `array_read_write` and `get_conditional_write_vars`, and updates the
``read`` set.
"""
read, write, indices = self.array_read_write(statements)
conditional_write_vars = self.get_conditional_write_vars()
read |= {var for var in write if var in conditional_write_vars}
read |= {
conditional_write_vars[var]
for var in write
if var in conditional_write_vars
}
return read, write, indices, conditional_write_vars
def has_repeated_indices(self, statements):
"""
Whether any of the statements potentially uses repeated indices (e.g.
pre- or postsynaptic indices).
"""
variables = self.variables
variable_indices = self.variable_indices
read, write, indices, conditional_write_vars = self.arrays_helper(statements)
# Check whether we potentially deal with repeated indices (which will
# be the case most importantly when we write to pre- or post-synaptic
# variables in synaptic code)
used_indices = {variable_indices[var] for var in write}
all_unique = all(
variables[index].unique
for index in used_indices
if index not in ("_idx", "0")
)
return not all_unique
def translate(self, code, dtype):
"""
Translates an abstract code block into the target language.
"""
scalar_statements = {}
vector_statements = {}
for ac_name, ac_code in code.items():
statements = make_statements(
ac_code, self.variables, dtype, optimise=True, blockname=ac_name
)
scalar_statements[ac_name], vector_statements[ac_name] = statements
for vs in vector_statements.values():
# Check that the statements are meaningful independent on the order of
# execution (e.g. for synapses)
try:
if self.has_repeated_indices(
vs
): # only do order dependence if there are repeated indices
check_for_order_independence(
vs, self.variables, self.variable_indices
)
except OrderDependenceError:
# If the abstract code is only one line, display it in full
if len(vs) <= 1:
error_msg = f"Abstract code: '{vs[0]}'\n"
else:
error_msg = (
f"{len(vs)} lines of abstract code, first line is: '{vs[0]}'\n"
)
logger.warn(
"Came across an abstract code block that may not be "
"well-defined: the outcome may depend on the "
"order of execution. You can ignore this warning if "
"you are sure that the order of operations does not "
"matter. " + error_msg
)
translated = self.translate_statement_sequence(
scalar_statements, vector_statements
)
return translated
|