1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
"""
Module providing `NumpyCodeObject`.
"""
import sys
from collections.abc import Iterable
import numpy as np
from brian2.core.base import BrianObjectException
from brian2.core.functions import Function
from brian2.core.preferences import BrianPreference, prefs
from brian2.core.variables import (
ArrayVariable,
AuxiliaryVariable,
DynamicArrayVariable,
Subexpression,
)
from ...codeobject import CodeObject, check_compiler_kwds, constant_or_scalar
from ...generators.numpy_generator import NumpyCodeGenerator
from ...targets import codegen_targets
from ...templates import Templater
__all__ = ["NumpyCodeObject"]
# Preferences
prefs.register_preferences(
"codegen.runtime.numpy",
"Numpy runtime codegen preferences",
discard_units=BrianPreference(
default=False,
docs="""
Whether to change the namespace of user-specifed functions to remove
units.
""",
),
)
class LazyArange(Iterable):
"""
A class that can be used as a `~numpy.arange` replacement (with an implied
step size of 1) but does not actually create an array of values until
necessary. It is somewhat similar to the ``range()`` function in Python 3,
but does not use a generator. It is tailored to a special use case, the
``_vectorisation_idx`` variable in numpy templates, and not meant for
general use. The ``_vectorisation_idx`` is used for stateless function
calls such as ``rand()`` and for the numpy codegen target determines the
number of values produced by such a call. This will often be the number of
neurons or synapses, and this class avoids creating a new array of that size
at every code object call when all that is needed is the *length* of the
array.
Examples
--------
>>> from brian2.codegen.runtime.numpy_rt.numpy_rt import LazyArange
>>> ar = LazyArange(10)
>>> len(ar)
10
>>> len(ar[:5])
5
>>> type(ar[:5])
<class 'brian2.codegen.runtime.numpy_rt.numpy_rt.LazyArange'>
>>> ar[5]
5
>>> for value in ar[3:7]:
... print(value)
...
3
4
5
6
>>> len(ar[np.array([1, 2, 3])])
3
"""
def __init__(self, stop, start=0, indices=None):
self.start = start
self.stop = stop
self.indices = indices
def __len__(self):
if self.indices is None:
return self.stop - self.start
else:
return len(self.indices)
def __getitem__(self, item):
if isinstance(item, slice):
if self.indices is None:
start, stop, step = item.start, item.stop, item.step
if step not in [None, 1]:
raise NotImplementedError("Step should be 1")
if start is None:
start = 0
if stop is None:
stop = len(self)
return LazyArange(
start=self.start + start, stop=min([self.start + stop, self.stop])
)
else:
raise NotImplementedError("Cannot slice LazyArange with indices")
elif isinstance(item, np.ndarray):
if item.dtype == np.dtype(bool):
item = np.nonzero(item)[0] # convert boolean array into integers
if len(item) == 0:
return np.array([], dtype=np.int32)
if np.min(item) < 0 or np.max(item) > len(self):
raise IndexError("Indexing array contains out-of-bounds values")
return LazyArange(start=self.start, stop=self.stop, indices=item)
elif isinstance(item, int):
if self.indices is None:
index = self.start + item
if index >= self.stop:
raise IndexError(index)
return index
else:
return self.indices[item]
else:
raise TypeError("Can only index with integer, numpy array, or slice.")
def __iter__(self):
if self.indices is None:
return iter(np.arange(self.start, self.stop))
else:
return iter(self.indices)
# Allow conversion to a proper array with np.array(...)
def __array__(self, dtype=None, copy=None):
if copy is False:
raise ValueError("LazyArange does not support copy=False")
if self.indices is None:
return np.arange(self.start, self.stop, dtype=dtype)
else:
return (self.indices + self.start).astype(dtype)
# Allow basic arithmetics (used when shifting stuff for subgroups)
def __add__(self, other):
if isinstance(other, int):
return LazyArange(start=self.start + other, stop=self.stop + other)
else:
return NotImplemented
def __radd__(self, other):
return self.__add__(other)
def __sub__(self, other):
if isinstance(other, int):
return LazyArange(start=self.start - other, stop=self.stop - other)
else:
return NotImplemented
class NumpyCodeObject(CodeObject):
"""
Execute code using Numpy
Default for Brian because it works on all platforms.
"""
templater = Templater(
"brian2.codegen.runtime.numpy_rt",
".py_",
env_globals={"constant_or_scalar": constant_or_scalar},
)
generator_class = NumpyCodeGenerator
class_name = "numpy"
def __init__(
self,
owner,
code,
variables,
variable_indices,
template_name,
template_source,
compiler_kwds,
name="numpy_code_object*",
):
check_compiler_kwds(compiler_kwds, [], "numpy")
from brian2.devices.device import get_device
self.device = get_device()
self.namespace = {
"_owner": owner,
# TODO: This should maybe go somewhere else
"logical_not": np.logical_not,
}
CodeObject.__init__(
self,
owner,
code,
variables,
variable_indices,
template_name,
template_source,
compiler_kwds=compiler_kwds,
name=name,
)
self.variables_to_namespace()
@classmethod
def is_available(cls):
# no test necessary for numpy
return True
def variables_to_namespace(self):
# Variables can refer to values that are either constant (e.g. dt)
# or change every timestep (e.g. t). We add the values of the
# constant variables here and add the names of non-constant variables
# to a list
# A list containing tuples of name and a function giving the value
self.nonconstant_values = []
for name, var in self.variables.items():
if isinstance(var, (AuxiliaryVariable, Subexpression)):
continue
try:
if not hasattr(var, "get_value"):
raise TypeError()
value = var.get_value()
except TypeError:
# Either a dummy Variable without a value or a Function object
if isinstance(var, Function):
impl = var.implementations[self.__class__].get_code(self.owner)
self.namespace[name] = impl
else:
self.namespace[name] = var
continue
if isinstance(var, ArrayVariable):
self.namespace[self.generator_class.get_array_name(var)] = value
if var.scalar and var.constant:
self.namespace[name] = value[0]
else:
self.namespace[name] = value
if isinstance(var, DynamicArrayVariable):
dyn_array_name = self.generator_class.get_array_name(
var, access_data=False
)
self.namespace[dyn_array_name] = self.device.get_value(
var, access_data=False
)
# Also provide the Variable object itself in the namespace (can be
# necessary for resize operations, for example)
self.namespace[f"_var_{name}"] = var
# There is one type of objects that we have to inject into the
# namespace with their current value at each time step: dynamic
# arrays that change in size during runs (i.e. not synapses but
# e.g. the structures used in monitors)
if isinstance(var, DynamicArrayVariable) and var.needs_reference_update:
self.nonconstant_values.append(
(
self.generator_class.get_array_name(var, self.variables),
var.get_value,
)
)
def update_namespace(self):
# update the values of the non-constant values in the namespace
for name, func in self.nonconstant_values:
self.namespace[name] = func()
def compile_block(self, block):
code = getattr(self.code, block, "").strip()
if not code or "EMPTY_CODE_BLOCK" in code:
return None
return compile(code, "(string)", "exec")
def run_block(self, block):
compiled_code = self.compiled_code[block]
if not compiled_code:
return
try:
exec(compiled_code, self.namespace)
except Exception as exc:
code = getattr(self.code, block)
message = (
"An exception occured during the execution of the "
f"'{block}' block of code object {self.name}.\n"
)
lines = code.split("\n")
message += "The error was raised in the following line:\n"
_, _, tb = sys.exc_info()
tb = tb.tb_next # Line in the code object's code
message += f"{lines[tb.tb_lineno - 1]}\n"
raise BrianObjectException(message, self.owner) from exc
# output variables should land in the variable name _return_values
if "_return_values" in self.namespace:
return self.namespace["_return_values"]
codegen_targets.add(NumpyCodeObject)
|