1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
|
import inspect
import types
from collections.abc import Callable, Mapping
import numpy as np
import sympy
from numpy.random import rand, randn
from sympy import Function as sympy_Function
from sympy import S
from sympy.codegen import cfunctions as sympy_cfunctions
import brian2.units.unitsafefunctions as unitsafe
from brian2.core.preferences import prefs
from brian2.core.variables import Constant
from brian2.units.allunits import second
from brian2.units.fundamentalunits import (
DIMENSIONLESS,
Quantity,
fail_for_dimension_mismatch,
get_dimensions,
is_dimensionless,
)
__all__ = ["DEFAULT_FUNCTIONS", "Function", "implementation", "declare_types"]
BRIAN_DTYPES = ["boolean", "integer", "float"]
VALID_ARG_TYPES = BRIAN_DTYPES + ["any"]
VALID_RETURN_TYPES = BRIAN_DTYPES + ["highest"]
def declare_types(**types):
"""
Decorator to declare argument and result types for a function
Usage is similar to `check_units` except that types must be one of ``{VALID_ARG_TYPES}``
and the result type must be one of ``{VALID_RETURN_TYPES}``. Unspecified argument
types are assumed to be ``'all'`` (i.e. anything is permitted), and an unspecified
result type is assumed to be ``'float'``. Note that the ``'highest'`` option for
result type will give the highest type of its argument, e.g. if the arguments
were boolean and integer then the result would be integer, if the arguments were
integer and float it would be float.
"""
def annotate_function_with_types(f):
if hasattr(f, "_orig_arg_names"):
arg_names = f._orig_arg_names
else:
arg_names = f.__code__.co_varnames[0 : f.__code__.co_argcount]
argtypes = []
for name in arg_names:
arg_type = types.get(name, "any")
if arg_type not in VALID_ARG_TYPES:
raise ValueError(
f"Argument type {arg_type} is not valid, must be one of"
f" {VALID_ARG_TYPES}, for argument {name}"
)
argtypes.append(arg_type)
for n in types:
if n not in arg_names and n != "result":
raise ValueError(f"Type specified for unknown argument {n}")
return_type = types.get("result", "float")
if return_type not in VALID_RETURN_TYPES:
raise ValueError(
f"Result type {return_type} is not valid, must be one of"
f" {VALID_RETURN_TYPES}"
)
f._arg_types = argtypes
f._return_type = return_type
f._orig_arg_names = arg_names
f._annotation_attributes = getattr(f, "_annotation_attributes", []) + [
"_arg_types",
"_return_type",
]
return f
return annotate_function_with_types
class Function:
"""
An abstract specification of a function that can be used as part of
model equations, etc.
Parameters
----------
pyfunc : function
A Python function that is represented by this `Function` object.
sympy_func : `sympy.Function`, optional
A corresponding sympy function (if any). Allows functions to be
interpreted by sympy and potentially make simplifications. For example,
``sqrt(x**2)`` could be replaced by ``abs(x)``.
arg_units : list of `Unit`, optional
If `pyfunc` does not provide unit information (which typically means
that it was not annotated with a `check_units` decorator), the
units of the arguments have to specified explicitly using this
parameter.
return_unit : `Unit` or callable, optional
Same as for `arg_units`: if `pyfunc` does not provide unit information,
this information has to be provided explictly here. `return_unit` can
either be a specific `Unit`, if the function always returns the same
unit, or a function of the input units, e.g. a "square" function would
return the square of its input units, i.e. `return_unit` could be
specified as ``lambda u: u**2``.
arg_types : list of str, optional
Similar to `arg_units`, but gives the type of the argument rather than
its unit. In the current version of Brian arguments are specified
by one of the following strings: 'boolean', 'integer', 'float', 'any'.
If `arg_types` is not specified, 'any' will be assumed. In
future versions, a more refined specification may be possible. Note that
any argument with a type other than float should have no units. If
return_type : str, optional
Similar to `return_unit` and `arg_types`. In addition to 'boolean',
'integer' and 'float' you can also use 'highest' which will return the
highest type of its arguments. You can also give a function, as for
`return_unit`. If the return type is not specified, it is assumed to
be 'float'.
stateless : bool, optional
Whether this function does not have an internal state, i.e. if it
always returns the same output when called with the same arguments.
This is true for mathematical functions but not true for ``rand()``, for
example. Defaults to ``True``.
auto_vectorise : bool, optional
Whether the implementations of this function should get an additional
argument (not specified in abstract code) that can be used to determine
the number of values that should be returned (for the numpy target), or
an index potentially useful for generating deterministic values
independent of the order of vectorisation (for all other targets). The
main use case are random number functions, e.g. equations refer to
``rand()``, but the generate code will actually call
``rand(_vectorisation_idx)``. Defaults to ``False``.
Notes
-----
If a function should be usable for code generation targets other than
Python/numpy, implementations for these target languages have to be added
using the `~brian2.codegen.functions.implementation` decorator or using the
`~brian2.codegen.functions.add_implementations` function.
"""
def __init__(
self,
pyfunc,
sympy_func=None,
arg_units=None,
arg_names=None,
return_unit=None,
arg_types=None,
return_type=None,
stateless=True,
auto_vectorise=False,
):
self.pyfunc = pyfunc
self.sympy_func = sympy_func
self._arg_units = arg_units
self._arg_names = arg_names
self._return_unit = return_unit
if return_unit == bool:
self._returns_bool = True
else:
self._returns_bool = False
self._arg_types = arg_types
self._return_type = return_type
self.stateless = stateless
self.auto_vectorise = auto_vectorise
if self._arg_units is None:
if not hasattr(pyfunc, "_arg_units"):
raise ValueError(
f"The Python function '{pyfunc.__name__}' does not specify "
"how it deals with units, need to specify "
"'arg_units' or use the '@check_units' "
"decorator."
)
elif pyfunc._arg_units is None:
# @check_units sets _arg_units to None if the units aren't
# specified for all of its arguments
raise ValueError(
f"The Python function '{pyfunc.__name__}' does not "
"specify the units for all of its arguments."
)
else:
self._arg_units = pyfunc._arg_units
else:
if any(isinstance(u, str) for u in self._arg_units):
if self._arg_names is None:
raise TypeError("Need to specify the names of the arguments.")
if len(self._arg_names) != len(self._arg_units):
raise TypeError(
"arg_names and arg_units need to have the "
f"same length ({len(self._arg_names)} != "
f"({len(self._arg_units)})"
)
if self._return_unit is None:
if not hasattr(pyfunc, "_return_unit"):
raise ValueError(
f"The Python function '{pyfunc.__name__}' does not "
"specify how it deals with units, need to specify "
"'return_unit' or use the '@check_units' decorator."
)
elif pyfunc._return_unit is None:
# @check_units sets _return_unit to None if no "result=..."
# keyword is specified.
raise ValueError(
f"The Python function '{pyfunc.__name__}' does not "
"specify the unit for its return value."
)
else:
self._return_unit = pyfunc._return_unit
if self._arg_types is None:
if hasattr(pyfunc, "_arg_types"):
self._arg_types = pyfunc._arg_types
else:
self._arg_types = ["any"] * len(self._arg_units)
if self._return_type is None:
self._return_type = getattr(pyfunc, "_return_type", "float")
for argtype, u in zip(self._arg_types, self._arg_units):
if (
argtype != "float"
and argtype != "any"
and u is not None
and not is_dimensionless(u)
):
raise TypeError(
"Non-float arguments must be dimensionless in function"
f" {pyfunc.__name__}"
)
if argtype not in VALID_ARG_TYPES:
raise ValueError(
f"Argument type {argtype} is not valid, must be one "
f"of {VALID_ARG_TYPES}, in function "
f"'{pyfunc.__name__}'."
)
if self._return_type not in VALID_RETURN_TYPES:
raise ValueError(
f"Return type {self._return_typ} is not valid, must "
f"be one of {VALID_RETURN_TYPES}, in function "
f"'{pyfunc.__name__}'"
)
#: Stores implementations for this function in a
#: `FunctionImplementationContainer`
self.implementations = FunctionImplementationContainer(self)
def is_locally_constant(self, dt):
"""
Return whether this function (if interpreted as a function of time)
should be considered constant over a timestep. This is most importantly
used by `TimedArray` so that linear integration can be used. In its
standard implementation, always returns ``False``.
Parameters
----------
dt : float
The length of a timestep (without units).
Returns
-------
constant : bool
Whether the results of this function can be considered constant
over one timestep of length `dt`.
"""
return False
def __call__(self, *args):
return self.pyfunc(*args)
class FunctionImplementation:
"""
A simple container object for function implementations.
Parameters
----------
name : str, optional
The name of the function in the target language. Should only be
specified if the function has to be renamed for the target language.
code : language-dependent, optional
A language dependent argument specifying the implementation in the
target language, e.g. a code string or a dictionary of code strings.
namespace : dict-like, optional
A dictionary of mappings from names to values that should be added
to the namespace of a `CodeObject` using the function.
dependencies : dict-like, optional
A mapping of names to `Function` objects, for additional functions
needed by this function.
availability_check : callable, optional
A function that will be called to check whether the function should be
made available (e.g. depending on whether it is supported by the
compiler). The function should do nothing if the function is
available, or raise a ``NotImplementedError`` with a message
explaining why it isn't.
dynamic : bool, optional
Whether this `code`/`namespace` is dynamic, i.e. generated for each
new context it is used in. If set to ``True``, `code` and `namespace`
have to be callable with a `Group` as an argument and are expected
to return the final `code` and `namespace`. Defaults to ``False``.
"""
def __init__(
self,
name=None,
code=None,
namespace=None,
dependencies=None,
availability_check=None,
dynamic=False,
compiler_kwds=None,
):
if compiler_kwds is None:
compiler_kwds = {}
self.name = name
if dependencies is None:
dependencies = {}
self.dependencies = dependencies
self._code = code
self._namespace = namespace
self.dynamic = dynamic
self.compiler_kwds = compiler_kwds
self.availability_check = availability_check
def get_code(self, owner):
if self.availability_check is not None:
self.availability_check()
if self.dynamic:
return self._code(owner)
else:
return self._code
def get_namespace(self, owner):
if self.dynamic:
return self._namespace(owner)
else:
return self._namespace
class FunctionImplementationContainer(Mapping):
"""
Helper object to store implementations and give access in a dictionary-like
fashion, using `CodeGenerator` implementations as a fallback for `CodeObject`
implementations.
"""
def __init__(self, function):
self._function = function
self._implementations = dict()
def __getitem__(self, key):
"""
Find an implementation for this function that can be used by the
`CodeObject` given as `key`. Will find implementations registered
for `key` itself (or one of its parents), or for the `CodeGenerator`
class that `key` uses (or one of its parents). In all cases,
implementations registered for the corresponding names qualify as well.
Parameters
----------
key : `CodeObject`
The `CodeObject` that will use the `Function`
Returns
-------
implementation : `FunctionImplementation`
An implementation suitable for `key`.
"""
fallback = getattr(key, "generator_class", None)
# in some cases we do the code generation with original_generator_class instead (e.g. GSL)
fallback_parent = getattr(key, "original_generator_class", None)
for K in [key, fallback, fallback_parent]:
name = getattr(K, "class_name", "no class name for key")
for impl_key, impl in self._implementations.items():
impl_key_name = getattr(
impl_key, "class_name", "no class name for implementation"
)
if (impl_key_name is not None and impl_key_name in [K, name]) or (
impl_key is not None and impl_key in [K, name]
):
return impl
if hasattr(K, "__bases__"):
for cls in inspect.getmro(K):
if cls in self._implementations:
return self._implementations[cls]
name = getattr(cls, "class_name", None)
if name in self._implementations:
return self._implementations[name]
# Give a nicer error message if possible
if getattr(key, "class_name", None) is not None:
key = key.class_name
elif getattr(fallback, "class_name", None) is not None:
key = fallback.class_name
keys = ", ".join(
[getattr(k, "class_name", str(k)) for k in self._implementations]
)
raise KeyError(
f"No implementation available for target '{key}'. "
f"Available implementations: {keys}"
)
def add_numpy_implementation(
self, wrapped_func, dependencies=None, discard_units=None, compiler_kwds=None
):
"""
Add a numpy implementation to a `Function`.
Parameters
----------
function : `Function`
The function description for which an implementation should be added.
wrapped_func : callable
The original function (that will be used for the numpy implementation)
dependencies : list of `Function`, optional
A list of functions this function needs.
discard_units : bool, optional
See `implementation`.
"""
if discard_units is None:
discard_units = prefs["codegen.runtime.numpy.discard_units"]
# Get the original function inside the check_units decorator
if hasattr(wrapped_func, "_orig_func"):
orig_func = wrapped_func._orig_func
else:
orig_func = wrapped_func
if discard_units:
new_globals = dict(orig_func.__globals__)
# strip away units in the function by changing its namespace
for key, value in new_globals.items():
if isinstance(value, Quantity):
new_globals[key] = np.asarray(value)
unitless_func = types.FunctionType(
orig_func.__code__,
new_globals,
orig_func.__name__,
orig_func.__defaults__,
orig_func.__closure__,
)
self._implementations["numpy"] = FunctionImplementation(
name=None,
code=unitless_func,
dependencies=dependencies,
compiler_kwds=None,
)
else:
def wrapper_function(*args):
arg_units = list(self._function._arg_units)
if self._function.auto_vectorise:
arg_units += [DIMENSIONLESS]
if not len(args) == len(arg_units):
func_name = self._function.pyfunc.__name__
raise ValueError(
f"Function {func_name} got {len(args)} arguments, "
f"expected {len(arg_units)}."
)
new_args = []
for arg, arg_unit in zip(args, arg_units):
if (
arg_unit == bool
or arg_unit is None
or isinstance(arg_unit, str)
):
new_args.append(arg)
else:
new_args.append(
Quantity.with_dimensions(arg, get_dimensions(arg_unit))
)
result = orig_func(*new_args)
if isinstance(self._function._return_unit, Callable):
return_unit = self._function._return_unit(
*[get_dimensions(a) for a in args]
)
else:
return_unit = self._function._return_unit
if return_unit == bool:
if not (
isinstance(result, bool) or np.asarray(result).dtype == bool
):
raise TypeError(
f"The function {orig_func.__name__} returned "
f"'{result}', but it was expected to return a "
"boolean value "
)
elif (
isinstance(return_unit, int) and return_unit == 1
) or return_unit.dim is DIMENSIONLESS:
fail_for_dimension_mismatch(
result,
return_unit,
f"The function '{orig_func.__name__}' "
f"returned {result}, but it was "
"expected to return a dimensionless "
"quantity.",
)
else:
fail_for_dimension_mismatch(
result,
return_unit,
f"The function '{orig_func.__name__}' "
f"returned {result}, but it was "
"expected to return a quantity with "
f"units {return_unit!r}.",
)
return np.asarray(result)
self._implementations["numpy"] = FunctionImplementation(
name=None, code=wrapper_function, dependencies=dependencies
)
def add_implementation(
self,
target,
code,
namespace=None,
dependencies=None,
availability_check=None,
name=None,
compiler_kwds=None,
):
self._implementations[target] = FunctionImplementation(
name=name,
code=code,
dependencies=dependencies,
availability_check=availability_check,
namespace=namespace,
compiler_kwds=compiler_kwds,
)
def add_dynamic_implementation(
self,
target,
code,
namespace=None,
dependencies=None,
availability_check=None,
name=None,
compiler_kwds=None,
):
"""
Adds an "dynamic implementation" for this function. `code` and `namespace`
arguments are expected to be callables that will be called in
`Network.before_run` with the owner of the `CodeObject` as an argument.
This allows to generate code that depends on details of the context it
is run in, e.g. the ``dt`` of a clock.
"""
if not callable(code):
raise TypeError(
f"code argument has to be a callable, is type {type(code)} instead"
)
if namespace is not None and not callable(namespace):
raise TypeError(
f"namespace argument has to be a callable, is type {type(code)} instead"
)
self._implementations[target] = FunctionImplementation(
name=name,
code=code,
namespace=namespace,
dependencies=dependencies,
availability_check=availability_check,
dynamic=True,
compiler_kwds=compiler_kwds,
)
def __len__(self):
return len(self._implementations)
def __iter__(self):
return iter(self._implementations)
def implementation(
target,
code=None,
namespace=None,
dependencies=None,
discard_units=None,
name=None,
**compiler_kwds,
):
"""
A simple decorator to extend user-written Python functions to work with code
generation in other languages.
Parameters
----------
target : str
Name of the code generation target (e.g. ``'cython'``) for which to add
an implementation.
code : str or dict-like, optional
What kind of code the target language expects is language-specific,
e.g. C++ code allows for a dictionary of code blocks instead of a
single string.
namespaces : dict-like, optional
A namespace dictionary (i.e. a mapping of names to values) that
should be added to a `CodeObject` namespace when using this function.
dependencies : dict-like, optional
A mapping of names to `Function` objects, for additional functions
needed by this function.
discard_units: bool, optional
Numpy functions can internally make use of the unit system. However,
during a simulation run, state variables are passed around as unitless
values for efficiency. If `discard_units` is set to ``False``, input
arguments will have units added to them so that the function can still
use units internally (the units will be stripped away from the return
value as well). Alternatively, if `discard_units` is set to ``True``,
the function will receive unitless values as its input. The namespace
of the function will be altered to make references to units (e.g.
``ms``) refer to the corresponding floating point values so that no
unit mismatch errors are raised. Note that this system cannot work in
all cases, e.g. it does not work with functions that internally imports
values (e.g. does ``from brian2 import ms``) or access values with
units indirectly (e.g. uses ``brian2.ms`` instead of ``ms``). If no
value is given, defaults to the preference setting
`codegen.runtime.numpy.discard_units`.
name : str, optional
The name of the function in the target language. Should only be
specified if the function has to be renamed for the target language.
compiler_kwds : dict, optional
Additional keyword arguments will be transferred to the code generation
stage, e.g. for C++-based targets, the code can make use of additional
header files by providing a list of strings as the ``headers`` argument.
Notes
-----
While it is in principle possible to provide a numpy implementation
as an argument for this decorator, this is normally not necessary -- the
numpy implementation should be provided in the decorated function.
If this decorator is used with other decorators such as `check_units` or
`declare_types`, it should be the uppermost decorator (that is, the
last one to be applied).
Examples
--------
Sample usage::
@implementation('cpp','''
#include<math.h>
inline double usersin(double x)
{
return sin(x);
}
''')
def usersin(x):
return sin(x)
"""
def do_user_implementation(func):
# Allow nesting of decorators
if isinstance(func, Function):
function = func
else:
function = Function(func)
if discard_units: # Add a numpy implementation that discards units
if not (target == "numpy" and code is None):
raise TypeError(
"'discard_units' can only be set for code "
"generation target 'numpy', without providing "
"any code."
)
function.implementations.add_numpy_implementation(
wrapped_func=func,
dependencies=dependencies,
discard_units=discard_units,
compiler_kwds=compiler_kwds,
)
else:
function.implementations.add_implementation(
target,
code=code,
dependencies=dependencies,
namespace=namespace,
name=name,
compiler_kwds=compiler_kwds,
)
# # copy any annotation attributes
# if hasattr(func, '_annotation_attributes'):
# for attrname in func._annotation_attributes:
# setattr(function, attrname, getattr(func, attrname))
# function._annotation_attributes = getattr(func, '_annotation_attributes', [])
return function
return do_user_implementation
class SymbolicConstant(Constant):
"""
Class for representing constants (e.g. pi) that are understood by sympy.
"""
def __init__(self, name, sympy_obj, value):
super().__init__(name, value=value)
self.sympy_obj = sympy_obj
################################################################################
# Standard functions and constants
################################################################################
def _exprel(x):
if x.is_zero:
return S.One
else:
return (sympy.exp(x) - S.One) / x
class exprel(sympy_Function):
"""
Represents ``(exp(x) - 1)/x``.
The benefit of using ``exprel(x)`` over ``(exp(x) - 1)/x``
is that the latter is prone to cancellation under finite precision
arithmetic when x is close to zero, and cannot be evaluated when x is
equal to zero.
"""
nargs = 1
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex == 1:
return (sympy.exp(*self.args) * (self.args[0] - S.One) + S.One) / self.args[
0
] ** 2
else:
raise sympy.ArgumentIndexError(self, argindex)
def _eval_expand_func(self, **hints):
return _exprel(*self.args)
def _eval_rewrite_as_exp(self, arg, **kwargs):
if arg.is_zero:
return S.One
else:
return (sympy.exp(arg) - S.One) / arg
_eval_rewrite_as_tractable = _eval_rewrite_as_exp
@classmethod
def eval(cls, arg):
if arg is None:
return None
if arg.is_zero:
return S.One
exp_arg = sympy.exp.eval(arg)
if exp_arg is not None:
return (exp_arg - S.One) / arg
def _eval_is_real(self):
return self.args[0].is_real
def _eval_is_finite(self):
return self.args[0].is_finite
_infinity_int = 1073741823 # maximum 32bit integer divided by 2
def timestep(t, dt):
"""
Converts a given time to an integer time step. This function slightly shifts
the time before dividing it by ``dt`` to make sure that multiples of ``dt``
do not end up in the preceding time step due to floating point issues. This
function is used in the refractoriness calculation.
.. versionadded:: 2.1.3
Parameters
----------
t : np.ndarray, float, Quantity
The time to convert.
dt : float or Quantity
The length of a simulation time step.
Returns
-------
ts : np.ndarray, np.int64
The time step corresponding to the given time.
Notes
-----
This function cannot handle infinity values, use big values instead (e.g.
a `NeuronGroup` will use ``-1e4*second`` as the value of the ``lastspike``
variable for neurons that never spiked).
"""
elapsed_steps = np.array((t + 1e-3 * dt) / dt, dtype=np.int64)
if elapsed_steps.shape == ():
elapsed_steps = elapsed_steps.item()
return elapsed_steps
DEFAULT_FUNCTIONS = {
# numpy functions that have the same name in numpy and math.h
"cos": Function(
unitsafe.cos, sympy_func=sympy.functions.elementary.trigonometric.cos
),
"sin": Function(
unitsafe.sin, sympy_func=sympy.functions.elementary.trigonometric.sin
),
"tan": Function(
unitsafe.tan, sympy_func=sympy.functions.elementary.trigonometric.tan
),
"cosh": Function(
unitsafe.cosh, sympy_func=sympy.functions.elementary.hyperbolic.cosh
),
"sinh": Function(
unitsafe.sinh, sympy_func=sympy.functions.elementary.hyperbolic.sinh
),
"tanh": Function(
unitsafe.tanh, sympy_func=sympy.functions.elementary.hyperbolic.tanh
),
"exp": Function(
unitsafe.exp, sympy_func=sympy.functions.elementary.exponential.exp
),
"log": Function(
unitsafe.log, sympy_func=sympy.functions.elementary.exponential.log
),
"log10": Function(unitsafe.log10, sympy_func=sympy_cfunctions.log10),
"expm1": Function(unitsafe.expm1, sympy_func=sympy_cfunctions.expm1),
"exprel": Function(unitsafe.exprel, sympy_func=exprel),
"log1p": Function(unitsafe.log1p, sympy_func=sympy_cfunctions.log1p),
"sqrt": Function(
np.sqrt,
sympy_func=sympy.functions.elementary.miscellaneous.sqrt,
arg_units=[None],
return_unit=lambda u: u**0.5,
),
"ceil": Function(
np.ceil,
sympy_func=sympy.functions.elementary.integers.ceiling,
arg_units=[None],
return_unit=lambda u: u,
),
"floor": Function(
np.floor,
sympy_func=sympy.functions.elementary.integers.floor,
arg_units=[None],
return_unit=lambda u: u,
),
# numpy functions that have a different name in numpy and math.h
"arccos": Function(
unitsafe.arccos, sympy_func=sympy.functions.elementary.trigonometric.acos
),
"arcsin": Function(
unitsafe.arcsin, sympy_func=sympy.functions.elementary.trigonometric.asin
),
"arctan": Function(
unitsafe.arctan, sympy_func=sympy.functions.elementary.trigonometric.atan
),
"abs": Function(
np.abs,
return_type="highest",
sympy_func=sympy.functions.elementary.complexes.Abs,
arg_units=[None],
return_unit=lambda u: u,
),
"sign": Function(
pyfunc=np.sign,
sympy_func=sympy.sign,
return_type="highest",
arg_units=[None],
return_unit=1,
),
# functions that need special treatment
"rand": Function(
pyfunc=rand, arg_units=[], return_unit=1, stateless=False, auto_vectorise=True
),
"randn": Function(
pyfunc=randn, arg_units=[], return_unit=1, stateless=False, auto_vectorise=True
),
"poisson": Function(
pyfunc=np.random.poisson,
arg_units=[1],
return_unit=1,
return_type="integer",
stateless=False,
auto_vectorise=True,
),
"clip": Function(
pyfunc=np.clip,
arg_units=[None, "a", "a"],
arg_names=["a", "a_min", "a_max"],
return_type="highest",
return_unit=lambda u1, u2, u3: u1,
),
"int": Function(
pyfunc=np.int_, return_type="integer", arg_units=[1], return_unit=1
),
"timestep": Function(
pyfunc=timestep,
return_type="integer",
arg_units=[second, second],
return_unit=1,
),
}
DEFAULT_CONSTANTS = {
"pi": SymbolicConstant("pi", sympy.pi, value=np.pi),
"e": SymbolicConstant("e", sympy.E, value=np.e),
"inf": SymbolicConstant("inf", S.Infinity, value=np.inf),
"-inf": SymbolicConstant("-inf", S.NegativeInfinity, value=-np.inf),
}
|