File: network.py

package info (click to toggle)
brian 2.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,872 kB
  • sloc: python: 51,820; cpp: 2,033; makefile: 108; sh: 72
file content (1483 lines) | stat: -rw-r--r-- 55,283 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
"""
Module defining the `Network` object, the basis of all simulation runs.

Preferences
-----------

.. document_brian_prefs:: core.network

"""

import gc
import os
import pickle as pickle
import sys
import time
from collections import Counter, defaultdict, namedtuple
from collections.abc import Mapping, Sequence

from brian2.core.base import BrianObject, BrianObjectException
from brian2.core.clocks import Clock, defaultclock
from brian2.core.names import Nameable
from brian2.core.namespace import get_local_namespace
from brian2.core.preferences import BrianPreference, prefs
from brian2.devices.device import all_devices, get_device
from brian2.groups.group import Group
from brian2.synapses.synapses import SummedVariableUpdater
from brian2.units.allunits import msecond, second
from brian2.units.fundamentalunits import Quantity, check_units
from brian2.utils.logger import get_logger

from .base import device_override

__all__ = ["Network", "profiling_summary", "scheduling_summary"]


logger = get_logger(__name__)


prefs.register_preferences(
    "core.network",
    "Network preferences",
    default_schedule=BrianPreference(
        default=[
            "start",
            "groups",
            "thresholds",
            "synapses",
            "resets",
            "end",
        ],
        docs="""
        Default schedule used for networks that
        don't specify a schedule.
        """,
    ),
)


def _format_time(time_in_s):
    """
    Helper function to format time in seconds, minutes, hours, days, depending
    on the magnitude.

    Examples
    --------
    >>> from brian2.core.network import _format_time
    >>> _format_time(12345)
    '3h 25m 45s'
    >>> _format_time(123)
    '2m 3s'
    >>> _format_time(12.5)
    '12s'
    >>> _format_time(.5)
    '< 1s'

    """
    divisors = [24 * 60 * 60, 60 * 60, 60, 1]
    letters = ["d", "h", "m", "s"]
    remaining = time_in_s
    text = ""
    for divisor, letter in zip(divisors, letters):
        time_to_represent = int(remaining / divisor)
        remaining -= time_to_represent * divisor
        if time_to_represent > 0 or len(text):
            if len(text):
                text += " "
            text += f"{int(time_to_represent)}{letter}"

    # less than one second
    if len(text) == 0:
        text = "< 1s"

    return text


class TextReport:
    """
    Helper object to report simulation progress in `Network.run`.

    Parameters
    ----------
    stream : file
        The stream to write to, commonly `sys.stdout` or `sys.stderr`.
    """

    def __init__(self, stream):
        self.stream = stream

    def __call__(self, elapsed, completed, start, duration):
        if completed == 0.0:
            self.stream.write(
                f"Starting simulation at t={start} for a duration of {duration}\n"
            )
        else:
            t = str(completed * duration)
            percent = int(completed * 100.0)
            real_t = _format_time(float(elapsed))
            report_msg = f"{t} ({percent}%) simulated in {real_t}"
            if completed < 1.0:
                remaining = int(round((1 - completed) / completed * float(elapsed)))
                remaining_msg = f", estimated {_format_time(remaining)} remaining.\n"
            else:
                remaining_msg = "\n"

            self.stream.write(report_msg + remaining_msg)

        # Flush the stream, this is useful if stream is a file
        self.stream.flush()


def _format_table(header, values, cell_formats):
    # table = [header] + values
    table_format = len(values) * [cell_formats]
    col_widths = [
        max(len(format.format(cell, 0)) for format, cell in zip(col_format, col))
        for col_format, col in zip(
            list(zip(*([len(header) * ["{}"]] + table_format))),
            list(zip(*([header] + values))),
        )
    ]
    line = "-+-".join("-" * width for width in col_widths)
    content = [
        " | ".join(
            format.format(cell, width)
            for format, cell, width in zip(row_format, row, col_widths)
        )
        for row_format, row in zip(table_format, values)
    ]
    formatted_header = " | ".join(
        "{:^{}}".format(h, width) for h, width in zip(header, col_widths)
    )

    return "\n".join([formatted_header, line] + content)


class SchedulingSummary:
    """
    Object representing the schedule that is used to simulate the objects in a
    network. Objects of this type are returned by `scheduling_summary`, they
    should not be created manually by the user.

    Parameters
    ----------
    objects : list of `BrianObject`
        The sorted list of objects that are simulated by the network.
    """

    def __init__(self, objects):
        # Map each dt to a rank (i.e. smallest dt=0, second smallest=1, etc.)
        self.dts = {
            dt: rank
            for rank, dt in enumerate(sorted({float(obj.clock.dt) for obj in objects}))
        }
        ScheduleEntry = namedtuple(
            "ScheduleEntry",
            field_names=[
                "when",
                "order",
                "dt",
                "name",
                "type",
                "active",
                "owner_name",
                "owner_type",
            ],
        )
        entries = []
        for obj in objects:
            if len(obj.contained_objects):
                continue
            owner = getattr(obj, "group", None)
            if owner is None:
                owner_name, owner_type = None, None
            else:
                owner_name = owner.name
                owner_type = owner.__class__.__name__
            entries.append(
                ScheduleEntry(
                    when=obj.when,
                    order=obj.order,
                    dt=obj.clock.dt,
                    name=obj.name,
                    type=obj.__class__.__name__,
                    active=obj.active,
                    owner_name=owner_name,
                    owner_type=owner_type,
                )
            )
        self.entries = entries

        self.all_dts = sorted({float(entry.dt) for entry in self.entries})
        # How many steps compared to the fastest clock?
        self.steps = {float(dt): int(dt / self.all_dts[0]) for dt in self.all_dts}

    def __repr__(self):
        return _format_table(
            ["object", "part of", "Clock dt", "when", "order", "active"],
            [
                [
                    f"{entry.name} ({entry.type})",
                    (
                        f"{entry.owner_name} ({entry.owner_type})"
                        if entry.owner_name is not None
                        else "--"
                    ),
                    "{} (every {})".format(
                        str(entry.dt),
                        (
                            "step"
                            if self.steps[float(entry.dt)] == 1
                            else f"{self.steps[float(entry.dt)]} steps"
                        ),
                    ),
                    entry.when,
                    entry.order,
                    "yes" if entry.active else "no",
                ]
                for entry in self.entries
            ],
            ["{:<{}}", "{:<{}}", "{:<{}}", "{:<{}}", "{:{}d}", "{:^{}}"],
        )

    def _repr_html_(self):
        rows = [
            """\
        <tr>
            <td style="text-align: left;">{}</td>
            <td style="text-align: left;">{}</td>
            <td style="text-align: left;">{}</td>
            <td style="text-align: left;">{}</td>
            <td style="text-align: right;">{}</td>
            <td style="text-align: center;">{}</td>
        </tr>
        """.format(
                f"<b>{entry.name}</b> (<em>{entry.type}</em>)",
                (
                    f"{entry.owner_name} (<em>{entry.owner_type}</em>)"
                    if entry.owner_name is not None
                    else "&ndash;"
                ),
                "{} (every {})".format(
                    str(entry.dt),
                    (
                        "step"
                        if self.steps[float(entry.dt)] == 1
                        else f"{self.steps[float(entry.dt)]} steps"
                    ),
                ),
                entry.when,
                entry.order,
                "yes" if entry.active else "no",
            )
            for entry in self.entries
        ]
        html_code = """
        <table>
        <thead>
        <tr>
            <th style="text-align: center;">object</th>
            <th style="text-align: center;">part of</th>
            <th style="text-align: center;">Clock dt</th>
            <th style="text-align: center;">when</th>
            <th style="text-align: center;">order</th>
            <th style="text-align: center;">active</th>
        </tr>
        </thead>
        <tbody>
{rows}
        </tbody>
        </table>
        """.format(
            rows="\n".join(rows)
        )
        return html_code


def _check_multiple_summed_updaters(objects):
    """
    Helper function that checks whether multiple `SummedVariableUpdater` target
    the same target variable. Raises a `NotImplementedError` if this is the
    case (and problematic, i.e. not when using non-overlapping subgroups).

    Parameters
    ----------
    objects : list of `BrianObject`
        The list of objects in the network.
    """
    summed_targets = {}
    for obj in objects:
        if isinstance(obj, SummedVariableUpdater):
            if obj.target_var in summed_targets:
                other_target = summed_targets[obj.target_var]
                if obj.target == other_target:
                    # We raise an error, even though this could be ok in
                    # principle (e.g. two Synapses could target different
                    # subsets of the target groups, without using subgroups)
                    msg = (
                        "Multiple 'summed variables' target the "
                        f"variable '{obj.target_var.name}' in group "
                        f"'{obj.target.name}'. Use multiple variables in "
                        "the target group instead."
                    )
                    raise NotImplementedError(msg)
                elif (
                    obj.target.start < other_target.stop
                    and other_target.start < obj.target.stop
                ):
                    # Overlapping subgroups
                    msg = (
                        "Multiple 'summed variables' target the "
                        f"variable '{obj.target_var.name}' in overlapping "
                        f"groups '{other_target.name}' and '{obj.target.name}'. "
                        "Use separate variables in the target groups instead."
                    )
                    raise NotImplementedError(msg)
            summed_targets[obj.target_var] = obj.target


def _get_all_objects(objs):
    """
    Helper function to get all objects of a 'Network' along with their
    corresponding ``contained_objects``.

    Parameters
    ----------
    objs : Iterable
        List or set of objects

    Returns
    -------
    all_objects : set
        A set of all Network's objects and respective child objects.
    """
    all_objects = set()
    for obj in objs:
        all_objects.add(obj)
        all_objects |= _get_all_objects(obj.contained_objects)
    return all_objects


class Network(Nameable):
    """
    Network(*objs, name='network*')

    The main simulation controller in Brian

    `Network` handles the running of a simulation. It contains a set of Brian
    objects that are added with `~Network.add`. The `~Network.run` method
    actually runs the simulation. The main run loop, determining which
    objects get called in what order is described in detail in the notes below.
    The objects in the `Network` are accesible via their names, e.g.
    `net['neurongroup']` would return the `NeuronGroup` with this name.

    Parameters
    ----------
    objs : (`BrianObject`, container), optional
        A list of objects to be added to the `Network` immediately, see
        `~Network.add`.
    name : str, optional
        An explicit name, if not specified gives an automatically generated name

    Notes
    -----

    The main run loop performs the following steps:

    1. Prepare the objects if necessary, see `~Network.prepare`.
    2. Determine the end time of the simulation as `~Network.t`+``duration``.
    3. Determine which set of clocks to update. This will be the clock with the
       smallest value of `~Clock.t`. If there are several with the same value,
       then all objects with these clocks will be updated simultaneously.
       Set `~Network.t` to the clock time.
    4. If the `~Clock.t` value of these clocks is past the end time of the
       simulation, stop running. If the `Network.stop` method or the
       `stop` function have been called, stop running. Set `~Network.t` to the
       end time of the simulation.
    5. For each object whose `~BrianObject.clock` is set to one of the clocks from the
       previous steps, call the `~BrianObject.update` method. This method will
       not be called if the `~BrianObject.active` flag is set to ``False``.
       The order in which the objects are called is described below.
    6. Increase `Clock.t` by `Clock.dt` for each of the clocks and return to
       step 2.

    The order in which the objects are updated in step 4 is determined by
    the `Network.schedule` and the objects `~BrianObject.when` and
    `~BrianObject.order` attributes. The `~Network.schedule` is a list of
    string names. Each `~BrianObject.when` attribute should be one of these
    strings, and the objects will be updated in the order determined by the
    schedule. The default schedule is
    ``['start', 'groups', 'thresholds', 'synapses', 'resets', 'end']``. In
    addition to the names provided in the schedule, automatic names starting
    with ``before_`` and ``after_`` can be used. That means that all objects
    with ``when=='before_start'`` will be updated first, then
    those with ``when=='start'``, ``when=='after_start'``,
    ``when=='before_groups'``, ``when=='groups'`` and so forth. If several
    objects have the same `~BrianObject.when` attribute, then the order is
    determined by the `~BrianObject.order` attribute (lower first).

    See Also
    --------

    MagicNetwork, run, stop
    """

    def __init__(self, *objs, **kwds):
        #: The set of objects in the Network, should not normally be modified
        #: directly.
        #: Note that in a `MagicNetwork`, this attribute only contains the
        #: objects during a run: it is filled in `before_run` and emptied in
        #: `after_run`
        self.objects = set()

        name = kwds.pop("name", "network*")

        if kwds:
            raise TypeError("Only keyword argument to Network is 'name'.")

        Nameable.__init__(self, name=name)

        #: Current time as a float
        self.t_ = 0.0

        for obj in objs:
            self.add(obj)

        #: Stored state of objects (store/restore)
        self._stored_state = {}

        # Stored profiling information (if activated via the keyword option)
        self._profiling_info = None

        self._schedule = None

    t = property(
        fget=lambda self: Quantity(self.t_, dim=second.dim),
        doc="Current simulation time in seconds (`Quantity`)",
    )

    @device_override("network_get_profiling_info")
    def get_profiling_info(self):
        """
        The only reason this is not directly implemented in `profiling_info`
        is to allow devices (e.g. `CPPStandaloneDevice`) to overwrite this.
        """
        if self._profiling_info is None:
            raise ValueError(
                "No profiling info collected (did you run with 'profile=True?')"
            )
        return sorted(self._profiling_info, key=lambda item: item[1], reverse=True)

    @property
    def profiling_info(self):
        """
        The time spent in executing the various `CodeObject` s.

        A list of ``(name, time)`` tuples, containing the name of the
        `CodeObject` and the total execution time for simulations of this object
        (as a `Quantity` with unit `second`). The list is sorted descending
        with execution time.

        Profiling has to be activated using the ``profile`` keyword in `run` or
        `Network.run`.
        """
        return self.get_profiling_info()

    _globally_stopped = False
    _globally_running = False

    def __getitem__(self, item):
        if not isinstance(item, str):
            raise TypeError(
                f"Need a name to access objects in a Network, got {type(item)} instead"
            )
        all_objects = _get_all_objects(self.objects)
        for obj in all_objects:
            if obj.name == item:
                return obj

        raise KeyError(f'No object with name "{item}" found')

    def __delitem__(self, key):
        if not isinstance(key, str):
            raise TypeError(
                "Need a name to access objects in a Network, got {type(key)} instead"
            )
        for obj in self.objects:
            if obj.name == key:
                self.remove(obj)
                return

        raise KeyError(f"No object with name '{key}' found")

    def __contains__(self, item):
        all_objects = _get_all_objects(self.objects)
        for obj in all_objects:
            if obj.name == item:
                return True
        return False

    def __len__(self):
        all_objects = _get_all_objects(self.objects)
        return len(all_objects)

    def __iter__(self):
        all_objects = _get_all_objects(self.objects)
        return iter(all_objects)

    def add(self, *objs):
        """
        Add objects to the `Network`

        Parameters
        ----------

        objs : (`BrianObject`, container)
            The `BrianObject` or container of Brian objects to be added. Specify
            multiple objects, or lists (or other containers) of objects.
            Containers will be added recursively. If the container is a `dict`
            then it will add the values from the dictionary but not the keys.
            If you want to add the keys, do ``add(objs.keys())``.
        """
        for obj in objs:
            if isinstance(obj, BrianObject):
                if obj._network is not None:
                    raise RuntimeError(
                        f"{obj.name} has already been simulated, cannot "
                        "add it to the network. If you were "
                        "trying to remove and add an object to "
                        "temporarily stop it from being run, "
                        "set its active flag to False instead."
                    )
                self.objects.add(obj)
            else:
                # allow adding values from dictionaries
                if isinstance(obj, Mapping):
                    self.add(*list(obj.values()))
                else:
                    try:
                        for o in obj:
                            # The following "if" looks silly but avoids an infinite
                            # recursion if a string is provided as an argument
                            # (which might occur during testing)
                            if o is obj:
                                raise TypeError()
                            self.add(o)
                    except TypeError:
                        raise TypeError(
                            "Can only add objects of type BrianObject, "
                            "or containers of such objects to Network"
                        )

    def remove(self, *objs):
        """
        Remove an object or sequence of objects from a `Network`.

        Parameters
        ----------

        objs : (`BrianObject`, container)
            The `BrianObject` or container of Brian objects to be removed. Specify
            multiple objects, or lists (or other containers) of objects.
            Containers will be removed recursively.
        """
        for obj in objs:
            if isinstance(obj, BrianObject):
                self.objects.remove(obj)
            else:
                try:
                    for o in obj:
                        self.remove(o)
                except TypeError:
                    raise TypeError(
                        "Can only remove objects of type "
                        "BrianObject, or containers of such "
                        "objects from Network"
                    )

    def _full_state(self):
        all_objects = _get_all_objects(self.objects)
        state = {}
        for obj in all_objects:
            if hasattr(obj, "_full_state"):
                state[obj.name] = obj._full_state()
        clocks = {obj.clock for obj in all_objects}
        for clock in clocks:
            state[clock.name] = clock._full_state()
        # Store the time as "0_t" -- this name is guaranteed not to clash with
        # the name of an object as names are not allowed to start with a digit
        state["0_t"] = self.t_
        return state

    @device_override("network_store")
    def store(self, name="default", filename=None):
        """
        store(name='default', filename=None)

        Store the state of the network and all included objects.

        Parameters
        ----------
        name : str, optional
            A name for the snapshot, if not specified uses ``'default'``.
        filename : str, optional
            A filename where the state should be stored. If not specified, the
            state will be stored in memory.

        Notes
        -----
        The state stored to disk can be restored with the `Network.restore`
        function. Note that it will only restore the *internal state* of all
        the objects (including undelivered spikes) -- the objects have to
        exist already and they need to have the same name as when they were
        stored. Equations, thresholds, etc. are *not* stored -- this is
        therefore not a general mechanism for object serialization. Also, the
        format of the file is not guaranteed to work across platforms or
        versions. If you are interested in storing the state of a network for
        documentation or analysis purposes use `Network.get_states` instead.
        """
        clocks = {obj.clock for obj in _get_all_objects(self.objects)}
        # Make sure that all clocks are up to date
        for clock in clocks:
            clock._set_t_update_dt(target_t=self.t)

        state = self._full_state()
        # Store the state of the random number generator
        dev = get_device()
        state["_random_generator_state"] = dev.get_random_state()

        if filename is None:
            self._stored_state[name] = state
        else:
            # A single file can contain several states, so we'll read in the
            # existing file first if it exists
            if os.path.exists(filename):
                with open(filename, "rb") as f:
                    store_state = pickle.load(f)
            else:
                store_state = {}
            store_state[name] = state

            with open(filename, "wb") as f:
                pickle.dump(store_state, f, protocol=pickle.HIGHEST_PROTOCOL)

    @device_override("network_restore")
    def restore(self, name="default", filename=None, restore_random_state=False):
        """
        restore(name='default', filename=None, restore_random_state=False)

        Retore the state of the network and all included objects.

        Parameters
        ----------
        name : str, optional
            The name of the snapshot to restore, if not specified uses
            ``'default'``.
        filename : str, optional
            The name of the file from where the state should be restored. If
            not specified, it is expected that the state exist in memory
            (i.e. `Network.store` was previously called without the ``filename``
            argument).
        restore_random_state : bool, optional
            Whether to restore the state of the random number generator. If set
            to ``True``, going back to an earlier state of the simulation will
            continue exactly where it left off, even if the simulation is
            stochastic. If set to ``False`` (the default), random numbers are
            independent between runs (except for explicitly set random seeds),
            regardless of whether `store`/`restore` has been used or not. Note
            that this also restores numpy's random number generator (since it is
            used internally by Brian), but it does *not* restore Python's
            builtin random number generator in the ``random`` module.
        """
        all_objects = _get_all_objects(self.objects)
        if filename is None:
            state = self._stored_state[name]
        else:
            with open(filename, "rb") as f:
                state = pickle.load(f)[name]
        self.t_ = state["0_t"]
        if restore_random_state:
            dev = get_device()
            dev.set_random_state(state["_random_generator_state"])
        clocks = {obj.clock for obj in all_objects}
        restored_objects = set()
        for obj in all_objects:
            if obj.name in state:
                obj._restore_from_full_state(state[obj.name])
                restored_objects.add(obj.name)
            elif hasattr(obj, "_restore_from_full_state"):
                raise KeyError(
                    "Stored state does not have a stored state for "
                    f"'{obj.name}'. Note that the names of all objects have "
                    "to be identical to the names when they were "
                    "stored."
                )
        for clock in clocks:
            clock._restore_from_full_state(state[clock.name])
        clock_names = {c.name for c in clocks}

        unnused = (
            set(state.keys())
            - restored_objects
            - clock_names
            - {"0_t", "_random_generator_state"}
        )
        if len(unnused):
            raise KeyError(
                "The stored state contains the state of the "
                "following objects which were not present in the "
                f"network: {', '.join(unnused)}. Note that the names of all "
                "objects have to be identical to the names when they "
                "were stored."
            )

    def get_states(
        self,
        units=True,
        format="dict",
        subexpressions=False,
        read_only_variables=True,
        level=0,
    ):
        """
        Return a copy of the current state variable values of objects in the
        network.. The returned arrays are copies of the actual arrays that
        store the state variable values, therefore changing the values in the
        returned dictionary will not affect the state variables.

        Parameters
        ----------
        vars : list of str, optional
            The names of the variables to extract. If not specified, extract
            all state variables (except for internal variables, i.e. names that
            start with ``'_'``). If the ``subexpressions`` argument is ``True``,
            the current values of all subexpressions are returned as well.
        units : bool, optional
            Whether to include the physical units in the return value. Defaults
            to ``True``.
        format : str, optional
            The output format. Defaults to ``'dict'``.
        subexpressions: bool, optional
            Whether to return subexpressions when no list of variable names
            is given. Defaults to ``False``. This argument is ignored if an
            explicit list of variable names is given in ``vars``.
        read_only_variables : bool, optional
            Whether to return read-only variables (e.g. the number of neurons,
            the time, etc.). Setting it to ``False`` will assure that the
            returned state can later be used with `set_states`. Defaults to
            ``True``.
        level : int, optional
            How much higher to go up the stack to resolve external variables.
            Only relevant if extracting subexpressions that refer to external
            variables.

        Returns
        -------
        values : dict
            A dictionary mapping object names to the state variables of that
            object, in the specified ``format``.

        See Also
        --------
        VariableOwner.get_states
        """
        states = dict()
        for obj in self.sorted_objects:
            if hasattr(obj, "get_states"):
                states[obj.name] = obj.get_states(
                    vars=None,
                    units=units,
                    format=format,
                    subexpressions=subexpressions,
                    read_only_variables=read_only_variables,
                    level=level + 1,
                )
        return states

    def set_states(self, values, units=True, format="dict", level=0):
        """
        Set the state variables of objects in the network.

        Parameters
        ----------
        values : dict
            A dictionary mapping object names to objects of ``format``, setting
            the states of this object.
        units : bool, optional
            Whether the ``values`` include physical units. Defaults to ``True``.
        format : str, optional
            The format of ``values``. Defaults to ``'dict'``
        level : int, optional
            How much higher to go up the stack to _resolve external variables.
            Only relevant when using string expressions to set values.

        See Also
        --------
        Group.set_states
        """
        # For the moment, 'dict' is the only supported format -- later this will
        # be made into an extensible system, see github issue #306
        for obj_name, obj_values in values.items():
            if obj_name not in self:
                raise KeyError(
                    "Network does not include a network with name '%s'." % obj_name
                )
            self[obj_name].set_states(
                obj_values, units=units, format=format, level=level + 1
            )

    def _get_schedule(self):
        if self._schedule is None:
            return list(prefs.core.network.default_schedule)
        else:
            return list(self._schedule)

    def _set_schedule(self, schedule):
        if schedule is None:
            self._schedule = None
            logger.debug("Resetting network {self.name} schedule to default schedule")
        else:
            if not isinstance(schedule, Sequence) or not all(
                isinstance(slot, str) for slot in schedule
            ):
                raise TypeError(
                    "Schedule has to be None or a sequence of scheduling slots"
                )
            if any(
                slot.startswith("before_") or slot.startswith("after_")
                for slot in schedule
            ):
                raise ValueError(
                    "Slot names are not allowed to start with "
                    "'before_' or 'after_' -- such slot names "
                    "are created automatically based on the "
                    "existing slot names."
                )
            self._schedule = list(schedule)
            logger.debug(
                f"Setting network '{self.name}' schedule to {self._schedule}",
                "_set_schedule",
            )

    schedule = property(
        fget=_get_schedule,
        fset=_set_schedule,
        doc="""
        List of ``when`` slots in the order they will be updated, can be modified.

        See notes on scheduling in `Network`. Note that additional ``when``
        slots can be added, but the schedule should contain at least all of the
        names in the default schedule:
        ``['start', 'groups', 'thresholds', 'synapses', 'resets', 'end']``.

        The schedule can also be set to ``None``, resetting it to the default
        schedule set by the `core.network.default_schedule` preference.
        """,
    )

    @property
    def sorted_objects(self):
        """
        The sorted objects of this network in the order defined by the schedule.

        Objects are sorted first by their ``when`` attribute, and secondly
        by the ``order`` attribute. The order of the ``when`` attribute is
        defined by the ``schedule``. In addition to the slot names defined in
        the schedule, automatic slot names starting with ``before_`` and
        ``after_`` can be used (e.g. the slots ``['groups', 'thresholds']``
        allow to use ``['before_groups', 'groups', 'after_groups',
        'before_thresholds', 'thresholds', 'after_thresholds']``).

        Final ties are resolved using the objects' names, leading to an
        arbitrary but deterministic sorting.
        """
        # Provided slot names are assigned positions 1, 4, 7, ...
        # before_... names are assigned positions 0, 3, 6, ...
        # after_... names are assigned positions 2, 5, 8, ...
        all_objects = _get_all_objects(self.objects)
        when_to_int = {when: 1 + i * 3 for i, when in enumerate(self.schedule)}
        when_to_int.update(
            (f"before_{when}", i * 3) for i, when in enumerate(self.schedule)
        )
        when_to_int.update(
            (f"after_{when}", 2 + i * 3) for i, when in enumerate(self.schedule)
        )
        return sorted(
            all_objects, key=lambda obj: (when_to_int[obj.when], obj.order, obj.name)
        )

    def scheduling_summary(self):
        """
        Return a `SchedulingSummary` object, representing the scheduling
        information for all objects included in the network.

        Returns
        -------
        summary : `SchedulingSummary`
            Object representing the scheduling information.
        """
        return SchedulingSummary(self.sorted_objects)

    def check_dependencies(self):
        all_objects = _get_all_objects(self.objects)
        all_ids = [obj.id for obj in all_objects]
        for obj in all_objects:
            for dependency in obj._dependencies:
                if dependency not in all_ids:
                    raise ValueError(
                        f"'{obj.name}' has been included in the network "
                        "but not the object on which it "
                        "depends."
                    )

    @device_override("network_before_run")
    def before_run(self, run_namespace):
        """
        before_run(namespace)

        Prepares the `Network` for a run.

        Objects in the `Network` are sorted into the correct running order, and
        their `BrianObject.before_run` methods are called.

        Parameters
        ----------
        run_namespace : dict-like, optional
            A namespace in which objects which do not define their own
            namespace will be run.
        """
        all_objects = self.sorted_objects
        prefs.check_all_validated()

        # Check names in the network for uniqueness
        names = [obj.name for obj in all_objects]
        non_unique_names = [name for name, count in Counter(names).items() if count > 1]
        if len(non_unique_names):
            formatted_names = ", ".join(f"'{name}'" for name in non_unique_names)
            raise ValueError(
                "All objects in a network need to have unique "
                "names, the following name(s) were used more than "
                f"once: {formatted_names}"
            )

        # Check that there are no SummedVariableUpdaters targeting the same
        # target variable
        _check_multiple_summed_updaters(all_objects)

        self._stopped = False
        Network._globally_stopped = False

        device = get_device()
        if device.network_schedule is not None:
            # The device defines a fixed network schedule
            if device.network_schedule != self.schedule:
                # TODO: The human-readable name of a device should be easier to get
                device_name = list(all_devices.keys())[
                    list(all_devices.values()).index(device)
                ]
                logger.warn(
                    f"The selected device '{device_name}' only "
                    "supports a fixed schedule, but this schedule is "
                    "not consistent with the network's schedule. The "
                    "simulation will use the device's schedule.\n"
                    f"Device schedule: {device.network_schedule}\n"
                    f"Network schedule: {self.schedule}\n"
                    "Set the network schedule explicitly or set the "
                    "core.network.default_schedule preference to "
                    "avoid this warning.",
                    name_suffix="schedule_conflict",
                    once=True,
                )

        objnames = ", ".join(obj.name for obj in all_objects)
        logger.debug(
            f"Preparing network '{self.name}' with {len(all_objects)} "
            f"objects: {objnames}",
            "before_run",
        )

        self.check_dependencies()

        for obj in all_objects:
            if obj.active:
                try:
                    obj.before_run(run_namespace)
                except Exception as ex:
                    raise BrianObjectException(
                        "An error occurred when preparing an object.", obj
                    ) from ex

        # Check that no object has been run as part of another network before
        for obj in all_objects:
            if obj._network is None:
                obj._network = self.id
            elif obj._network != self.id:
                raise RuntimeError(
                    f"'{obj.name}' has already been run in the "
                    "context of another network. Use "
                    "add/remove to change the objects "
                    "in a simulated network instead of "
                    "creating a new one."
                )

        clocknames = ", ".join(f"{obj.name} (dt={obj.dt})" for obj in self._clocks)
        logger.debug(
            f"Network '{self.name}' uses {len(self._clocks)} clocks: {clocknames}",
            "before_run",
        )

    @device_override("network_after_run")
    def after_run(self):
        """
        after_run()
        """
        for obj in self.sorted_objects:
            if obj.active:
                obj.after_run()

    def _nextclocks(self):
        clocks_times_dt = [
            (c, self._clock_variables[c][1][0], self._clock_variables[c][2][0])
            for c in self._clocks
        ]
        minclock, min_time, minclock_dt = min(clocks_times_dt, key=lambda k: k[1])
        curclocks = {
            clock
            for clock, time, dt in clocks_times_dt
            if (
                time == min_time
                or abs(time - min_time) / min(minclock_dt, dt) < Clock.epsilon_dt
            )
        }
        return minclock, curclocks

    @device_override("network_run")
    @check_units(duration=second, report_period=second)
    def run(
        self,
        duration,
        report=None,
        report_period=10 * second,
        namespace=None,
        profile=None,
        level=0,
    ):
        """
        run(duration, report=None, report_period=60*second, namespace=None, level=0)

        Runs the simulation for the given duration.

        Parameters
        ----------
        duration : `Quantity`
            The amount of simulation time to run for.
        report : {None, 'text', 'stdout', 'stderr', function}, optional
            How to report the progress of the simulation. If ``None``, do not
            report progress. If ``'text'`` or ``'stdout'`` is specified, print
            the progress to stdout. If ``'stderr'`` is specified, print the
            progress to stderr. Alternatively, you can specify a callback
            ``callable(elapsed, completed, start, duration)`` which will be passed
            the amount of time elapsed as a `Quantity`, the fraction ``completed``
            from 0.0 to 1.0, the ``start`` time of the simulation as a `Quantity`
            and the total duration of the simulation (in biological time)
            as a `Quantity`.
            The function will always be called at the beginning and the end
            (i.e. for fractions 0.0 and 1.0), regardless of the ``report_period``.
        report_period : `Quantity`
            How frequently (in real time) to report progress.
        namespace : dict-like, optional
            A namespace that will be used in addition to the group-specific
            namespaces (if defined). If not specified, the locals
            and globals around the run function will be used.
        profile : bool, optional
            Whether to record profiling information (see
            `Network.profiling_info`). Defaults to ``None`` (which will use the
            value set by ``set_device``, if any).
        level : int, optional
            How deep to go up the stack frame to look for the locals/global
            (see `namespace` argument). Only used by run functions that call
            this run function, e.g. `MagicNetwork.run` to adjust for the
            additional nesting.

        Notes
        -----
        The simulation can be stopped by calling `Network.stop` or the
        global `stop` function.

        Raises
        ------
        ValueError
            Error raised when duration passed in run function is negative.
        """
        if duration < 0:
            raise ValueError(
                f"Function 'run' expected a non-negative duration but got '{duration}'"
            )
        # This will trigger warnings for objects that have not been included in a network
        gc.collect()
        device = get_device()  # Do not use the ProxyDevice -- slightly faster

        if profile is None:
            profile = device.build_options.get("profile", False)

        all_objects = self.sorted_objects
        self._clocks = {obj.clock for obj in all_objects}
        single_clock = len(self._clocks) == 1

        t_start = self.t
        t_end = self.t + duration

        if single_clock:
            clock = list(self._clocks)[0]
            clock.set_interval(self.t, t_end)
        else:
            # We get direct references to the underlying variables for all clocks
            # to avoid expensive access during the run loop
            self._clock_variables = {
                c: (
                    c.variables["timestep"].get_value(),
                    c.variables["t"].get_value(),
                    c.variables["dt"].get_value(),
                )
                for c in self._clocks
            }
            for clock in self._clocks:
                clock.set_interval(self.t, t_end)

        # Get the local namespace
        if namespace is None:
            namespace = get_local_namespace(level=level + 3)

        self.before_run(namespace)

        if len(all_objects) == 0:
            return  # TODO: raise an error? warning?

        start_time = time.time()

        logger.debug(
            f"Simulating network '{self.name}' from time {t_start} to {t_end}.", "run"
        )

        if report is not None:
            report_period = float(report_period)
            next_report_time = start_time + report_period
            if report == "text" or report == "stdout":
                report_callback = TextReport(sys.stdout)
            elif report == "stderr":
                report_callback = TextReport(sys.stderr)
            elif isinstance(report, str):
                raise ValueError(
                    f'Do not know how to handle report argument "{report}".'
                )
            elif callable(report):
                report_callback = report
            else:
                raise TypeError(
                    "Do not know how to handle report argument, "
                    "it has to be one of 'text', 'stdout', "
                    "'stderr', or a callable function/object, "
                    f"but it is of type {type(report)}"
                )
            report_callback(0 * second, 0.0, t_start, duration)

        profiling_info = defaultdict(float)

        if single_clock:
            timestep, t, dt = (
                clock.variables["timestep"].get_value(),
                clock.variables["t"].get_value(),
                clock.variables["dt"].get_value(),
            )
        else:
            # Find the first clock to be updated (see note below)
            clock, curclocks = self._nextclocks()
            timestep, _, _ = self._clock_variables[clock]

        running = timestep[0] < clock._i_end

        active_objects = [obj for obj in all_objects if obj.active]

        Network._globally_running = True
        while running and not self._stopped and not Network._globally_stopped:
            if not single_clock:
                timestep, t, dt = self._clock_variables[clock]
            # update the network time to this clock's time
            self.t_ = t[0]
            if report is not None:
                current = time.time()
                if current > next_report_time:
                    report_callback(
                        (current - start_time) * second,
                        (self.t_ - float(t_start)) / float(t_end - t_start),
                        t_start,
                        duration,
                    )
                    next_report_time = current + report_period

            # update the objects and tick forward the clock(s)
            if single_clock:
                if profile:
                    for obj in active_objects:
                        obj_time = time.time()
                        obj.run()
                        profiling_info[obj.name] += time.time() - obj_time
                else:
                    for obj in active_objects:
                        obj.run()

                timestep[0] += 1
                t[0] = timestep[0] * dt[0]
            else:
                if profile:
                    for obj in active_objects:
                        if obj._clock in curclocks:
                            obj_time = time.time()
                            obj.run()
                            profiling_info[obj.name] += time.time() - obj_time
                else:
                    for obj in active_objects:
                        if obj._clock in curclocks:
                            obj.run()

                for c in curclocks:
                    timestep, t, dt = self._clock_variables[c]
                    timestep[0] += 1
                    t[0] = timestep[0] * dt[0]
                # find the next clocks to be updated. The < operator for Clock
                # determines that the first clock to be updated should be the one
                # with the smallest t value, unless there are several with the
                # same t value in which case we update all of them
                clock, curclocks = self._nextclocks()
                timestep, _, _ = self._clock_variables[clock]

            if (
                device._maximum_run_time is not None
                and time.time() - start_time > float(device._maximum_run_time)
            ):
                self._stopped = True
            else:
                running = timestep[0] < clock._i_end

        end_time = time.time()
        Network._globally_running = False
        if self._stopped or Network._globally_stopped:
            self.t_ = clock.t_
        else:
            self.t_ = float(t_end)

        device._last_run_time = end_time - start_time
        if duration > 0:
            device._last_run_completed_fraction = (self.t - t_start) / duration
        else:
            device._last_run_completed_fraction = 1.0

        # check for nans
        for obj in all_objects:
            if isinstance(obj, Group):
                obj._check_for_invalid_states()

        if report is not None:
            report_callback(
                (end_time - start_time) * second,
                device._last_run_completed_fraction,
                t_start,
                duration,
            )
        self.after_run()

        logger.debug(
            f"Finished simulating network '{self.name}' "
            f"(took {end_time-start_time:.2f}s)",
            "run",
        )
        # Store profiling info (or erase old info to avoid confusion)
        if profile:
            self._profiling_info = [
                (name, t * second) for name, t in profiling_info.items()
            ]
            # Dump a profiling summary to the log
            logger.debug(f"\n{str(profiling_summary(self))}")
        else:
            self._profiling_info = None

    @device_override("network_stop")
    def stop(self):
        """
        stop()

        Stops the network from running, this is reset the next time `Network.run` is called.
        """
        self._stopped = True

    def __repr__(self):
        objects = ", ".join(obj.__repr__() for obj in _get_all_objects(self.objects))
        return (
            f"<{self.__class__.__name__} at time t={self.t!s}, containing "
            f"objects: {objects}>"
        )


class ProfilingSummary:
    """
    Class to nicely display the results of profiling. Objects of this class are
    returned by `profiling_summary`.

    Parameters
    ----------

    net : `Network`
        The `Network` object to profile.
    show : int, optional
        The number of results to show (the longest results will be shown). If
        not specified, all results will be shown.

    See Also
    --------
    Network.profiling_info
    """

    def __init__(self, net, show=None):
        prof = net.profiling_info
        if len(prof):
            names, times = list(zip(*prof))
        else:  # Can happen if a network has been run for 0ms
            # Use a dummy entry to prevent problems with empty lists later
            names = ["no code objects have been run"]
            times = [0 * second]
        self.total_time = sum(times)
        self.time_unit = msecond
        if self.total_time > 1 * second:
            self.time_unit = second
        if show is not None:
            names = names[:show]
            times = times[:show]
        if self.total_time > 0 * second:
            self.percentages = [100.0 * time / self.total_time for time in times]
        else:
            self.percentages = [0.0 for _ in times]
        self.names_maxlen = max(len(name) for name in names)
        self.names = [name + " " * (self.names_maxlen - len(name)) for name in names]
        self.times = times

    def __repr__(self):
        times = [f"{time / self.time_unit:.2f} {self.time_unit}" for time in self.times]
        times_maxlen = max(len(time) for time in times)
        times = [" " * (times_maxlen - len(time)) + time for time in times]
        percentages = [f"{percentage:.2f} %" for percentage in self.percentages]
        percentages_maxlen = max(len(percentage) for percentage in percentages)
        percentages = [
            (" " * (percentages_maxlen - len(percentage))) + percentage
            for percentage in percentages
        ]

        s = "Profiling summary"
        s += f"\n{'=' * len(s)}\n"
        for name, t, percentage in zip(self.names, times, percentages):
            s += f"{name}    {t}    {percentage}\n"
        return s

    def _repr_html_(self):
        times = [f"{time / self.time_unit:.2f} {self.time_unit}" for time in self.times]
        percentages = [f"{percentage:.2f} %" for percentage in self.percentages]
        s = '<h2 class="brian_prof_summary_header">Profiling summary</h2>\n'
        s += '<table class="brian_prof_summary_table">\n'
        for name, t, percentage in zip(self.names, times, percentages):
            s += "<tr>"
            s += f"<td>{name}</td>"
            s += f'<td style="text-align: right">{t}</td>'
            s += f'<td style="text-align: right">{percentage}</td>'
            s += "</tr>\n"
        s += "</table>"
        return s


def profiling_summary(net=None, show=None):
    """
    Returns a `ProfilingSummary` of the profiling info for a run. This object
    can be transformed to a string explicitly but on an interactive console
    simply calling `profiling_summary` is enough since it will
    automatically convert the `ProfilingSummary` object.

    Parameters
    ----------

    net : {`Network`, None} optional
        The `Network` object to profile, or `magic_network` if not specified.
    show : int
        The number of results to show (the longest results will be shown). If
        not specified, all results will be shown.
    """
    if net is None:
        from .magic import magic_network

        net = magic_network
    return ProfilingSummary(net, show)


def scheduling_summary(net=None):
    """
    Returns a `SchedulingSummary` object, representing the scheduling
    information for all objects included in the given `Network` (or the
    "magic" network, if none is specified). The returned objects can be
    printed or converted to a string to give an ASCII table representation of
    the schedule. In a Jupyter notebook, the output can be displayed as a
    HTML table.

    Parameters
    ----------
    net : `Network`, optional
        The network for which the scheduling information should be displayed.
        Defaults to the "magic" network.

    Returns
    -------
    summary : `SchedulingSummary`
        An object that represents the scheduling information.
    """
    if net is None:
        from .magic import magic_network

        magic_network._update_magic_objects(level=1)
        net = magic_network
    return net.scheduling_summary()


def schedule_propagation_offset(net=None):
    """
    Returns the minimal time difference for a post-synaptic effect after a
    spike. With the default schedule, this time difference is 0, since the
    ``thresholds`` slot precedes the ``synapses`` slot. For the GeNN device,
    however, a post-synaptic effect will occur in the following time step, this
    function therefore returns one ``dt``.

    Parameters
    ----------
    net : `Network`
        The network to check (uses the magic network if not specified).

    Returns
    -------
    offset : `Quantity`
        The minimum spike propagation delay: ``0*ms`` for the standard schedule
        but ``dt`` for schedules where ``synapses`` precedes ``thresholds``.

    Notes
    -----
    This function always returns ``0*ms`` or ``defaultclock.dt`` -- no attempt
    is made to deal with other clocks.
    """
    from brian2.core.magic import magic_network

    device = get_device()
    if device.network_schedule is not None:
        schedule = device.network_schedule
    else:
        if net is None:
            net = magic_network
        schedule = net.schedule

    if schedule.index("thresholds") < schedule.index("synapses"):
        return 0 * second
    else:
        return defaultclock.dt