File: variables.py

package info (click to toggle)
brian 2.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,872 kB
  • sloc: python: 51,820; cpp: 2,033; makefile: 108; sh: 72
file content (2179 lines) | stat: -rw-r--r-- 78,913 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
"""
Classes used to specify the type of a function, variable or common
sub-expression.
"""

import collections
import functools
import numbers
from collections.abc import Mapping

import numpy as np

from brian2.units.fundamentalunits import (
    DIMENSIONLESS,
    Dimension,
    Quantity,
    fail_for_dimension_mismatch,
    get_unit,
    get_unit_for_display,
)
from brian2.utils.caching import CacheKey
from brian2.utils.logger import get_logger
from brian2.utils.stringtools import get_identifiers, word_substitute

from .base import device_override, weakproxy_with_fallback
from .preferences import prefs

__all__ = [
    "Variable",
    "Constant",
    "ArrayVariable",
    "DynamicArrayVariable",
    "Subexpression",
    "AuxiliaryVariable",
    "VariableView",
    "Variables",
    "LinkedVariable",
    "linked_var",
]


logger = get_logger(__name__)


def get_dtype(obj):
    """
    Helper function to return the `numpy.dtype` of an arbitrary object.

    Parameters
    ----------
    obj : object
        Any object (but typically some kind of number or array).

    Returns
    -------
    dtype : `numpy.dtype`
        The type of the given object.
    """
    if hasattr(obj, "dtype"):
        return obj.dtype
    else:
        return np.dtype(type(obj))


def get_dtype_str(val):
    """
    Returns canonical string representation of the dtype of a value or dtype

    Returns
    -------

    dtype_str : str
        The numpy dtype name
    """
    if isinstance(val, np.dtype):
        return val.name
    if isinstance(val, type):
        return get_dtype_str(val())

    is_bool = val is True or val is False or val is np.True_ or val is np.False_
    if is_bool:
        return "bool"
    if hasattr(val, "dtype"):
        return get_dtype_str(val.dtype)
    if isinstance(val, numbers.Number):
        return get_dtype_str(np.array(val).dtype)

    return f"unknown[{str(val)}, {val.__class__.__name__}]"


def variables_by_owner(variables, owner):
    owner_name = getattr(owner, "name", None)
    return {
        varname: var
        for varname, var in variables.items()
        if getattr(var.owner, "name", None) is owner_name
    }


class Variable(CacheKey):
    r"""
    An object providing information about model variables (including implicit
    variables such as ``t`` or ``xi``). This class should never be
    instantiated outside of testing code, use one of its subclasses instead.

    Parameters
    ----------
    name : 'str'
        The name of the variable. Note that this refers to the *original*
        name in the owning group. The same variable may be known under other
        names in other groups (e.g. the variable ``v`` of a `NeuronGroup` is
        known as ``v_post`` in a `Synapse` connecting to the group).
    dimensions : `Dimension`, optional
        The physical dimensions of the variable.
    owner : `Nameable`, optional
        The object that "owns" this variable, e.g. the `NeuronGroup` or
        `Synapses` object that declares the variable in its model equations.
        Defaults to ``None`` (the value used for `Variable` objects without an
        owner, e.g. external `Constant`\ s).
    dtype : `dtype`, optional
        The dtype used for storing the variable. Defaults to the preference
        `core.default_scalar.dtype`.
    scalar : bool, optional
        Whether the variable is a scalar value (``True``) or vector-valued, e.g.
        defined for every neuron (``False``). Defaults to ``False``.
    constant: bool, optional
        Whether the value of this variable can change during a run. Defaults
        to ``False``.
    read_only : bool, optional
        Whether this is a read-only variable, i.e. a variable that is set
        internally and cannot be changed by the user (this is used for example
        for the variable ``N``, the number of neurons in a group). Defaults
        to ``False``.
    array : bool, optional
        Whether this variable is an array. Allows for simpler check than testing
        ``isinstance(var, ArrayVariable)``. Defaults to ``False``.
    """

    _cache_irrelevant_attributes = {"owner"}

    def __init__(
        self,
        name,
        dimensions=DIMENSIONLESS,
        owner=None,
        dtype=None,
        scalar=False,
        constant=False,
        read_only=False,
        dynamic=False,
        array=False,
    ):
        assert isinstance(dimensions, Dimension)

        #: The variable's dimensions.
        self.dim = dimensions

        #: The variable's name.
        self.name = name

        #: The `Group` to which this variable belongs.
        self.owner = weakproxy_with_fallback(owner) if owner is not None else None

        #: The dtype used for storing the variable.
        self.dtype = dtype
        if dtype is None:
            self.dtype = prefs.core.default_float_dtype

        if self.is_boolean:
            if dimensions is not DIMENSIONLESS:
                raise ValueError("Boolean variables can only be dimensionless")

        #: Whether the variable is a scalar
        self.scalar = scalar

        #: Whether the variable is constant during a run
        self.constant = constant

        #: Whether the variable is read-only
        self.read_only = read_only

        #: Whether the variable is dynamically sized (only for non-scalars)
        self.dynamic = dynamic

        #: Whether the variable is an array
        self.array = array

    def __getstate__(self):
        state = self.__dict__.copy()
        state["owner"] = state["owner"].__repr__.__self__  # replace proxy
        return state

    def __setstate__(self, state):
        state["owner"] = weakproxy_with_fallback(state["owner"])
        self.__dict__ = state

    @property
    def is_boolean(self):
        return np.issubdtype(self.dtype, np.bool_)

    @property
    def is_integer(self):
        return np.issubdtype(self.dtype, np.signedinteger)

    @property
    def dtype_str(self):
        """
        String representation of the numpy dtype
        """
        return get_dtype_str(self)

    @property
    def unit(self):
        """
        The `Unit` of this variable
        """
        return get_unit(self.dim)

    def get_value(self):
        """
        Return the value associated with the variable (without units). This
        is the way variables are accessed in generated code.
        """
        raise TypeError(f"Cannot get value for variable {self}")

    def set_value(self, value):
        """
        Set the value associated with the variable.
        """
        raise TypeError(f"Cannot set value for variable {self}")

    def get_value_with_unit(self):
        """
        Return the value associated with the variable (with units).
        """
        return Quantity(self.get_value(), self.dim)

    def get_addressable_value(self, name, group):
        """
        Get the value (without units) of this variable in a form that can be
        indexed in the context of a group. For example, if a
        postsynaptic variable ``x`` is accessed in a synapse ``S`` as
        ``S.x_post``, the synaptic indexing scheme can be used.

        Parameters
        ----------
        name : str
            The name of the variable
        group : `Group`
            The group providing the context for the indexing. Note that this
            `group` is not necessarily the same as `Variable.owner`: a variable
            owned by a `NeuronGroup` can be indexed in a different way if
            accessed via a `Synapses` object.

        Returns
        -------
        variable : object
            The variable in an indexable form (without units).
        """
        return self.get_value()

    def get_addressable_value_with_unit(self, name, group):
        """
        Get the value (with units) of this variable in a form that can be
        indexed in the context of a group. For example, if a postsynaptic
        variable ``x`` is accessed in a synapse ``S`` as ``S.x_post``, the
        synaptic indexing scheme can be used.

        Parameters
        ----------
        name : str
            The name of the variable
        group : `Group`
            The group providing the context for the indexing. Note that this
            `group` is not necessarily the same as `Variable.owner`: a variable
            owned by a `NeuronGroup` can be indexed in a different way if
            accessed via a `Synapses` object.

        Returns
        -------
        variable : object
            The variable in an indexable form (with units).
        """
        return self.get_value_with_unit()

    def get_len(self):
        """
        Get the length of the value associated with the variable or ``0`` for
        a scalar variable.
        """
        if self.scalar:
            return 0
        else:
            return len(self.get_value())

    def __len__(self):
        return self.get_len()

    def __repr__(self):
        description = (
            "<{classname}(dimensions={dimensions}, "
            " dtype={dtype}, scalar={scalar}, constant={constant},"
            " read_only={read_only})>"
        )
        return description.format(
            classname=self.__class__.__name__,
            dimensions=repr(self.dim),
            dtype=getattr(self.dtype, "__name__", repr(self.dtype)),
            scalar=repr(self.scalar),
            constant=repr(self.constant),
            read_only=repr(self.read_only),
        )


# ------------------------------------------------------------------------------
# Concrete classes derived from `Variable` -- these are the only ones ever
# instantiated.
# ------------------------------------------------------------------------------


class Constant(Variable):
    """
    A scalar constant (e.g. the number of neurons ``N``). Information such as
    the dtype or whether this variable is a boolean are directly derived from
    the `value`. Most of the time `Variables.add_constant` should be used
    instead of instantiating this class directly.

    Parameters
    ----------
    name : str
        The name of the variable
    dimensions : `Dimension`, optional
        The physical dimensions of the variable. Note that the variable itself
        (as referenced by value) should never have units attached.
    value: reference to the variable value
        The value of the constant.
    owner : `Nameable`, optional
        The object that "owns" this variable, for constants that belong to a
        specific group, e.g. the ``N`` constant for a `NeuronGroup`. External
        constants will have ``None`` (the default value).
    """

    def __init__(self, name, value, dimensions=DIMENSIONLESS, owner=None):
        # Determine the type of the value
        is_bool = (
            value is True or value is False or value is np.True_ or value is np.False_
        )

        if is_bool:
            dtype = bool
        else:
            dtype = get_dtype(value)

        # Use standard Python types if possible for numpy scalars
        if getattr(value, "shape", None) == () and hasattr(value, "dtype"):
            numpy_type = value.dtype
            if np.can_cast(numpy_type, int):
                value = int(value)
            elif np.can_cast(numpy_type, float):
                value = float(value)
            elif np.can_cast(numpy_type, complex):
                value = complex(value)
            elif value is np.True_:
                value = True
            elif value is np.False_:
                value = False

        #: The constant's value
        self.value = value

        super().__init__(
            dimensions=dimensions,
            name=name,
            owner=owner,
            dtype=dtype,
            scalar=True,
            constant=True,
            read_only=True,
        )

    def get_value(self):
        return self.value

    def item(self):
        return self.value


class AuxiliaryVariable(Variable):
    """
    Variable description for an auxiliary variable (most likely one that is
    added automatically to abstract code, e.g. ``_cond`` for a threshold
    condition), specifying its type and unit for code generation. Most of the
    time `Variables.add_auxiliary_variable` should be used instead of
    instantiating this class directly.

    Parameters
    ----------
    name : str
        The name of the variable
    dimensions : `Dimension`, optional
        The physical dimensions of the variable.
    dtype : `dtype`, optional
        The dtype used for storing the variable. If none is given, defaults
        to `core.default_float_dtype`.
    scalar : bool, optional
        Whether the variable is a scalar value (``True``) or vector-valued, e.g.
        defined for every neuron (``False``). Defaults to ``False``.
    """

    def __init__(self, name, dimensions=DIMENSIONLESS, dtype=None, scalar=False):
        super().__init__(dimensions=dimensions, name=name, dtype=dtype, scalar=scalar)

    def get_value(self):
        raise TypeError(
            f"Cannot get the value for an auxiliary variable ({self.name})."
        )


class ArrayVariable(Variable):
    """
    An object providing information about a model variable stored in an array
    (for example, all state variables). Most of the time `Variables.add_array`
    should be used instead of instantiating this class directly.

    Parameters
    ----------
    name : 'str'
        The name of the variable. Note that this refers to the *original*
        name in the owning group. The same variable may be known under other
        names in other groups (e.g. the variable ``v`` of a `NeuronGroup` is
        known as ``v_post`` in a `Synapse` connecting to the group).
    dimensions : `Dimension`, optional
        The physical dimensions of the variable
    owner : `Nameable`
        The object that "owns" this variable, e.g. the `NeuronGroup` or
        `Synapses` object that declares the variable in its model equations.
    size : int
        The size of the array
    device : `Device`
        The device responsible for the memory access.
    dtype : `dtype`, optional
        The dtype used for storing the variable. If none is given, defaults
        to `core.default_float_dtype`.
    constant : bool, optional
        Whether the variable's value is constant during a run.
        Defaults to ``False``.
    scalar : bool, optional
        Whether this array is a 1-element array that should be treated like a
        scalar (e.g. for a single delay value across synapses). Defaults to
        ``False``.
    read_only : bool, optional
        Whether this is a read-only variable, i.e. a variable that is set
        internally and cannot be changed by the user. Defaults
        to ``False``.
    unique : bool, optional
        Whether the values in this array are all unique. This information is
        only important for variables used as indices and does not have to
        reflect the actual contents of the array but only the possibility of
        non-uniqueness (e.g. synaptic indices are always unique but the
        corresponding pre- and post-synaptic indices are not). Defaults to
        ``False``.
    """

    def __init__(
        self,
        name,
        owner,
        size,
        device,
        dimensions=DIMENSIONLESS,
        dtype=None,
        constant=False,
        scalar=False,
        read_only=False,
        dynamic=False,
        unique=False,
    ):
        super().__init__(
            dimensions=dimensions,
            name=name,
            owner=owner,
            dtype=dtype,
            scalar=scalar,
            constant=constant,
            read_only=read_only,
            dynamic=dynamic,
            array=True,
        )

        #: Wether all values in this arrays are necessarily unique (only
        #: relevant for index variables).
        self.unique = unique

        #: The `Device` responsible for memory access.
        self.device = device

        #: The size of this variable.
        self.size = size

        if scalar and size != 1:
            raise ValueError(f"Scalar variables need to have size 1, not size {size}.")

        #: Another variable, on which the write is conditioned (e.g. a variable
        #: denoting the absence of refractoriness)
        self.conditional_write = None

    def set_conditional_write(self, var):
        if not var.is_boolean:
            raise TypeError(
                "A variable can only be conditionally writeable "
                f"depending on a boolean variable, '{var.name}' is not "
                "boolean."
            )
        self.conditional_write = var

    def get_value(self):
        return self.device.get_value(self)

    def item(self):
        if self.size == 1:
            return self.get_value().item()
        else:
            raise ValueError("can only convert an array of size 1 to a Python scalar")

    def set_value(self, value):
        self.device.fill_with_array(self, value)

    def get_len(self):
        return self.size

    def get_addressable_value(self, name, group):
        return VariableView(name=name, variable=self, group=group, dimensions=None)

    def get_addressable_value_with_unit(self, name, group):
        return VariableView(name=name, variable=self, group=group, dimensions=self.dim)


class DynamicArrayVariable(ArrayVariable):
    """
    An object providing information about a model variable stored in a dynamic
    array (used in `Synapses`). Most of the time `Variables.add_dynamic_array`
    should be used instead of instantiating this class directly.

    Parameters
    ----------
    name : 'str'
        The name of the variable. Note that this refers to the *original*
        name in the owning group. The same variable may be known under other
        names in other groups (e.g. the variable ``v`` of a `NeuronGroup` is
        known as ``v_post`` in a `Synapse` connecting to the group).
    dimensions : `Dimension`, optional
        The physical dimensions of the variable.
    owner : `Nameable`
        The object that "owns" this variable, e.g. the `NeuronGroup` or
        `Synapses` object that declares the variable in its model equations.
    size : int or tuple of int
        The (initial) size of the variable.
    device : `Device`
        The device responsible for the memory access.
    dtype : `dtype`, optional
        The dtype used for storing the variable. If none is given, defaults
        to `core.default_float_dtype`.
    constant : bool, optional
        Whether the variable's value is constant during a run.
        Defaults to ``False``.
    needs_reference_update : bool, optional
        Whether the code objects need a new reference to the underlying data at
        every time step. This should be set if the size of the array can be
        changed by other code objects. Defaults to ``False``.
    scalar : bool, optional
        Whether this array is a 1-element array that should be treated like a
        scalar (e.g. for a single delay value across synapses). Defaults to
        ``False``.
    read_only : bool, optional
        Whether this is a read-only variable, i.e. a variable that is set
        internally and cannot be changed by the user. Defaults
        to ``False``.
    unique : bool, optional
        Whether the values in this array are all unique. This information is
        only important for variables used as indices and does not have to
        reflect the actual contents of the array but only the possibility of
        non-uniqueness (e.g. synaptic indices are always unique but the
        corresponding pre- and post-synaptic indices are not). Defaults to
        ``False``.
    """

    # The size of a dynamic variable can of course change and changes in
    # size should not invalidate the cache
    _cache_irrelevant_attributes = ArrayVariable._cache_irrelevant_attributes | {"size"}

    def __init__(
        self,
        name,
        owner,
        size,
        device,
        dimensions=DIMENSIONLESS,
        dtype=None,
        constant=False,
        needs_reference_update=False,
        resize_along_first=False,
        scalar=False,
        read_only=False,
        unique=False,
    ):
        if isinstance(size, int):
            ndim = 1
        else:
            ndim = len(size)

        #: The number of dimensions
        self.ndim = ndim

        if constant and needs_reference_update:
            raise ValueError("A variable cannot be constant and need reference updates")
        #: Whether this variable needs an update of the reference to the
        #: underlying data whenever it is passed to a code object
        self.needs_reference_update = needs_reference_update

        #: Whether this array will be only resized along the first dimension
        self.resize_along_first = resize_along_first

        super().__init__(
            dimensions=dimensions,
            owner=owner,
            name=name,
            size=size,
            device=device,
            constant=constant,
            dtype=dtype,
            scalar=scalar,
            dynamic=True,
            read_only=read_only,
            unique=unique,
        )

    @property
    def dimensions(self):
        logger.warn(
            "The DynamicArrayVariable.dimensions attribute is "
            "deprecated, use .ndim instead",
            "deprecated_dimensions",
            once=True,
        )
        return self.ndim

    def resize(self, new_size):
        """
        Resize the dynamic array. Calls `self.device.resize` to do the
        actual resizing.

        Parameters
        ----------
        new_size : int or tuple of int
            The new size.
        """
        if self.resize_along_first:
            self.device.resize_along_first(self, new_size)
        else:
            self.device.resize(self, new_size)

        self.size = new_size


class Subexpression(Variable):
    """
    An object providing information about a named subexpression in a model.
    Most of the time `Variables.add_subexpression` should be used instead of
    instantiating this class directly.

    Parameters
    ----------
    name : str
        The name of the subexpression.
    dimensions : `Dimension`, optional
        The physical dimensions of the subexpression.
    owner : `Group`
        The group to which the expression refers.
    expr : str
        The subexpression itself.
    device : `Device`
        The device responsible for the memory access.
    dtype : `dtype`, optional
        The dtype used for the expression. Defaults to
        `core.default_float_dtype`.
    scalar: bool, optional
        Whether this is an expression only referring to scalar variables.
        Defaults to ``False``
    """

    def __init__(
        self,
        name,
        owner,
        expr,
        device,
        dimensions=DIMENSIONLESS,
        dtype=None,
        scalar=False,
    ):
        super().__init__(
            dimensions=dimensions,
            owner=owner,
            name=name,
            dtype=dtype,
            scalar=scalar,
            constant=False,
            read_only=True,
        )

        #: The `Device` responsible for memory access
        self.device = device

        #: The expression defining the subexpression
        self.expr = expr.strip()

        #: The identifiers used in the expression
        self.identifiers = get_identifiers(expr)

    def get_addressable_value(self, name, group):
        return VariableView(
            name=name, variable=self, group=group, dimensions=DIMENSIONLESS
        )

    def get_addressable_value_with_unit(self, name, group):
        return VariableView(name=name, variable=self, group=group, dimensions=self.dim)

    def __contains__(self, var):
        return var in self.identifiers

    def __repr__(self):
        description = (
            "<{classname}(name={name}, dimensions={dimensions}, dtype={dtype}, "
            "expr={expr}, owner=<{owner}>)>"
        )
        return description.format(
            classname=self.__class__.__name__,
            name=repr(self.name),
            dimensions=repr(self.dim),
            dtype=repr(self.dtype),
            expr=repr(self.expr),
            owner=self.owner.name,
        )


# ------------------------------------------------------------------------------
# Classes providing views on variables and storing variables information
# ------------------------------------------------------------------------------
class LinkedVariable:
    """
    A simple helper class to make linking variables explicit. Users should use
    `linked_var` instead.

    Parameters
    ----------
    group : `Group`
        The group through which the `variable` is accessed (not necessarily the
        same as ``variable.owner``.
    name : str
        The name of `variable` in `group` (not necessarily the same as
         ``variable.name``).
    variable : `Variable`
        The variable that should be linked.
    index : str or `ndarray`, optional
        An indexing array (or the name of a state variable), providing a mapping
        from the entries in the link source to the link target.
    """

    def __init__(self, group, name, variable, index=None):
        if isinstance(variable, DynamicArrayVariable):
            raise NotImplementedError(
                f"Linking to variable {variable.name} is "
                "not supported, can only link to "
                "state variables of fixed size."
            )
        self.group = group
        self.name = name
        self.variable = variable
        self.index = index


def linked_var(group_or_variable, name=None, index=None):
    """
    Represents a link target for setting a linked variable.

    Parameters
    ----------
    group_or_variable : `NeuronGroup` or `VariableView`
        Either a reference to the target `NeuronGroup` (e.g. ``G``) or a direct
        reference to a `VariableView` object (e.g. ``G.v``). In case only the
        group is specified, `name` has to be specified as well.
    name : str, optional
        The name of the target variable, necessary if `group_or_variable` is a
        `NeuronGroup`.
    index : str or `ndarray`, optional
        An indexing array (or the name of a state variable), providing a mapping
        from the entries in the link source to the link target.

    Examples
    --------
    >>> from brian2 import *
    >>> G1 = NeuronGroup(10, 'dv/dt = -v / (10*ms) : volt')
    >>> G2 = NeuronGroup(10, 'v : volt (linked)')
    >>> G2.v = linked_var(G1, 'v')
    >>> G2.v = linked_var(G1.v)  # equivalent
    """
    if isinstance(group_or_variable, VariableView):
        if name is not None:
            raise ValueError(
                "Cannot give a variable and a variable name at the same time."
            )
        return LinkedVariable(
            group_or_variable.group,
            group_or_variable.name,
            group_or_variable.variable,
            index=index,
        )
    elif name is None:
        raise ValueError("Need to provide a variable name")
    else:
        return LinkedVariable(
            group_or_variable, name, group_or_variable.variables[name], index=index
        )


class VariableView:
    """
    A view on a variable that allows to treat it as an numpy array while
    allowing special indexing (e.g. with strings) in the context of a `Group`.

    Parameters
    ----------
    name : str
        The name of the variable (not necessarily the same as ``variable.name``).
    variable : `Variable`
        The variable description.
    group : `Group`
        The group through which the variable is accessed (not necessarily the
        same as `variable.owner`).
    dimensions : `Dimension`, optional
        The physical dimensions to be used for the variable, should be `None`
        when a variable is accessed without units (e.g. when accessing
        ``G.var_``).
    """

    __array_priority__ = 10

    def __init__(self, name, variable, group, dimensions=None):
        self.name = name
        self.variable = variable
        self.index_var_name = group.variables.indices[name]
        if self.index_var_name in ("_idx", "0"):
            self.index_var = self.index_var_name
        else:
            self.index_var = group.variables[self.index_var_name]

        if isinstance(variable, Subexpression):
            # For subexpressions, we *always* have to go via codegen to get
            # their value -- since we cannot do this without the group, we
            # hold a strong reference
            self.group = group
        else:
            # For state variable arrays, we can do most access without the full
            # group, using the indexing reference below. We therefore only keep
            # a weak reference to the group.
            self.group = weakproxy_with_fallback(group)
        self.group_name = group.name
        # We keep a strong reference to the `Indexing` object so that basic
        # indexing is still possible, even if the group no longer exists
        self.indexing = self.group._indices
        self.dim = dimensions

    @property
    def unit(self):
        """
        The `Unit` of this variable
        """
        return get_unit(self.dim)

    def get_item(self, item, level=0, namespace=None):
        """
        Get the value of this variable. Called by `__getitem__`.

        Parameters
        ----------
        item : slice, `ndarray` or string
            The index for the setting operation
        level : int, optional
            How much farther to go up in the stack to find the implicit
            namespace (if used, see `run_namespace`).
        namespace : dict-like, optional
            An additional namespace that is used for variable lookup (if not
            defined, the implicit namespace of local variables is used).
        """
        from brian2.core.namespace import get_local_namespace  # avoids circular import

        if isinstance(item, str):
            # Check whether the group still exists to give a more meaningful
            # error message if it does not
            try:
                self.group.name
            except ReferenceError:
                raise ReferenceError(
                    "Cannot use string expressions, the "
                    f"group '{self.group_name}', providing the "
                    "context for the expression, no longer exists. "
                    "Consider holding an explicit reference "
                    "to it to keep it alive."
                )
            if namespace is None:
                namespace = get_local_namespace(level=level + 1)
            values = self.get_with_expression(item, run_namespace=namespace)
        else:
            if isinstance(self.variable, Subexpression):
                if namespace is None:
                    namespace = get_local_namespace(level=level + 1)
                values = self.get_subexpression_with_index_array(
                    item, run_namespace=namespace
                )
            else:
                values = self.get_with_index_array(item)

        if self.dim is DIMENSIONLESS or self.dim is None:
            return values
        else:
            return Quantity(values, self.dim)

    def __getitem__(self, item):
        return self.get_item(item, level=1)

    def set_item(self, item, value, level=0, namespace=None):
        """
        Set this variable. This function is called by `__setitem__` but there
        is also a situation where it should be called directly: if the context
        for string-based expressions is higher up in the stack, this function
        allows to set the `level` argument accordingly.

        Parameters
        ----------
        item : slice, `ndarray` or string
            The index for the setting operation
        value : `Quantity`, `ndarray` or number
            The value for the setting operation
        level : int, optional
            How much farther to go up in the stack to find the implicit
            namespace (if used, see `run_namespace`).
        namespace : dict-like, optional
            An additional namespace that is used for variable lookup (if not
            defined, the implicit namespace of local variables is used).
        """
        from brian2.core.namespace import get_local_namespace  # avoids circular import

        variable = self.variable
        if variable.read_only:
            raise TypeError(f"Variable {self.name} is read-only.")

        # Check whether the group allows writing to the variable (e.g. for
        # synaptic variables, writing is only allowed after a connect)
        try:
            self.group.check_variable_write(variable)
        except ReferenceError:
            # Ignore problems with weakly referenced groups that don't exist
            # anymore at this time (e.g. when doing neuron.axon.var = ...)
            pass

        # The second part is equivalent to item == slice(None) but formulating
        # it this way prevents a FutureWarning if one of the elements is a
        # numpy array
        if isinstance(item, slice) and (
            item.start is None and item.stop is None and item.step is None
        ):
            item = "True"

        check_units = self.dim is not None

        if namespace is None:
            namespace = get_local_namespace(level=level + 1)

        # Both index and values are strings, use a single code object do deal
        # with this situation
        if isinstance(value, str) and isinstance(item, str):
            self.set_with_expression_conditional(
                item, value, check_units=check_units, run_namespace=namespace
            )
        elif isinstance(item, str):
            try:
                if isinstance(value, str):
                    raise TypeError  # Will be dealt with below
                value = np.asanyarray(value).item()
            except (TypeError, ValueError):
                if item != "True":
                    raise TypeError(
                        "When setting a variable based on a string "
                        "index, the value has to be a string or a "
                        "scalar."
                    )

            if item == "True":
                # We do not want to go through code generation for runtime
                self.set_with_index_array(slice(None), value, check_units=check_units)
            else:
                self.set_with_expression_conditional(
                    item, repr(value), check_units=check_units, run_namespace=namespace
                )
        elif isinstance(value, str):
            self.set_with_expression(
                item, value, check_units=check_units, run_namespace=namespace
            )
        else:  # No string expressions involved
            self.set_with_index_array(item, value, check_units=check_units)

    def __setitem__(self, item, value):
        self.set_item(item, value, level=1)

    @device_override("variableview_set_with_expression")
    def set_with_expression(self, item, code, run_namespace, check_units=True):
        """
        Sets a variable using a string expression. Is called by
        `VariableView.set_item` for statements such as
        ``S.var[:, :] = 'exp(-abs(i-j)/space_constant)*nS'``

        Parameters
        ----------
        item : `ndarray`
            The indices for the variable (in the context of this `group`).
        code : str
            The code that should be executed to set the variable values.
            Can contain references to indices, such as `i` or `j`
        run_namespace : dict-like, optional
            An additional namespace that is used for variable lookup (if not
            defined, the implicit namespace of local variables is used).
        check_units : bool, optional
            Whether to check the units of the expression.
        run_namespace : dict-like, optional
            An additional namespace that is used for variable lookup (if not
            defined, the implicit namespace of local variables is used).
        """
        # Some fairly complicated code to raise a warning in ambiguous
        # situations, when indexing with a group. For example, in:
        #   group.v[subgroup] =  'i'
        # the index 'i' is the index of 'group' ("absolute index") and not of
        # subgroup ("relative index")
        if hasattr(item, "variables") or (
            isinstance(item, tuple)
            and any(hasattr(one_item, "variables") for one_item in item)
        ):
            # Determine the variables that are used in the expression
            from brian2.codegen.translation import get_identifiers_recursively

            identifiers = get_identifiers_recursively([code], self.group.variables)
            variables = self.group.resolve_all(
                identifiers, run_namespace, user_identifiers=set()
            )
            if not isinstance(item, tuple):
                index_groups = [item]
            else:
                index_groups = item

            for varname, var in variables.items():
                for index_group in index_groups:
                    if not hasattr(index_group, "variables"):
                        continue
                    if (
                        varname in index_group.variables
                        or var.name in index_group.variables
                    ):
                        indexed_var = index_group.variables.get(
                            varname, index_group.variables.get(var.name)
                        )
                        if indexed_var is not var:
                            logger.warn(
                                "The string expression used for setting "
                                f"'{self.name}' refers to '{varname}' which "
                                "might be ambiguous. It will be "
                                "interpreted as referring to "
                                f"'{varname}' in '{self.group.name}', not as "
                                "a variable of a group used for "
                                "indexing.",
                                "ambiguous_string_expression",
                            )
                            break  # no need to warn more than once for a variable

        indices = np.atleast_1d(self.indexing(item))
        abstract_code = f"{self.name} = {code}"
        variables = Variables(self.group)
        variables.add_array(
            "_group_idx", size=len(indices), dtype=np.int32, values=indices
        )

        # TODO: Have an additional argument to avoid going through the index
        # array for situations where iterate_all could be used
        from brian2.codegen.codeobject import create_runner_codeobj
        from brian2.devices.device import get_device

        device = get_device()

        codeobj = create_runner_codeobj(
            self.group,
            abstract_code,
            "group_variable_set",
            additional_variables=variables,
            check_units=check_units,
            run_namespace=run_namespace,
            codeobj_class=device.code_object_class(
                fallback_pref="codegen.string_expression_target"
            ),
        )
        codeobj()

    @device_override("variableview_set_with_expression_conditional")
    def set_with_expression_conditional(
        self, cond, code, run_namespace, check_units=True
    ):
        """
        Sets a variable using a string expression and string condition. Is
        called by `VariableView.set_item` for statements such as
        ``S.var['i!=j'] = 'exp(-abs(i-j)/space_constant)*nS'``

        Parameters
        ----------
        cond : str
            The string condition for which the variables should be set.
        code : str
            The code that should be executed to set the variable values.
        run_namespace : dict-like, optional
            An additional namespace that is used for variable lookup (if not
            defined, the implicit namespace of local variables is used).
        check_units : bool, optional
            Whether to check the units of the expression.
        """
        variable = self.variable
        if variable.scalar and cond != "True":
            raise IndexError(
                f"Cannot conditionally set the scalar variable '{self.name}'."
            )
        abstract_code_cond = f"_cond = {cond}"
        abstract_code = f"{self.name} = {code}"
        variables = Variables(None)
        variables.add_auxiliary_variable("_cond", dtype=bool)
        from brian2.codegen.codeobject import create_runner_codeobj

        # TODO: Have an additional argument to avoid going through the index
        # array for situations where iterate_all could be used
        from brian2.devices.device import get_device

        device = get_device()
        codeobj = create_runner_codeobj(
            self.group,
            {"condition": abstract_code_cond, "statement": abstract_code},
            "group_variable_set_conditional",
            additional_variables=variables,
            check_units=check_units,
            run_namespace=run_namespace,
            codeobj_class=device.code_object_class(
                fallback_pref="codegen.string_expression_target"
            ),
        )
        codeobj()

    @device_override("variableview_get_with_expression")
    def get_with_expression(self, code, run_namespace):
        """
        Gets a variable using a string expression. Is called by
        `VariableView.get_item` for statements such as
        ``print(G.v['g_syn > 0'])``.

        Parameters
        ----------
        code : str
            An expression that states a condition for elements that should be
            selected. Can contain references to indices, such as ``i`` or ``j``
            and to state variables. For example: ``'i>3 and v>0*mV'``.
        run_namespace : dict-like
            An additional namespace that is used for variable lookup (either
            an explicitly defined namespace or one taken from the local
            context).
        """
        variable = self.variable
        if variable.scalar:
            raise IndexError(
                f"Cannot access the variable '{self.name}' with a "
                "string expression, it is a scalar variable."
            )
        # Add the recorded variable under a known name to the variables
        # dictionary. Important to deal correctly with
        # the type of the variable in C++
        variables = Variables(None)
        variables.add_auxiliary_variable(
            "_variable",
            dimensions=variable.dim,
            dtype=variable.dtype,
            scalar=variable.scalar,
        )
        variables.add_auxiliary_variable("_cond", dtype=bool)

        abstract_code = f"_variable = {self.name}\n"
        abstract_code += f"_cond = {code}"
        from brian2.codegen.codeobject import create_runner_codeobj
        from brian2.devices.device import get_device

        device = get_device()
        codeobj = create_runner_codeobj(
            self.group,
            abstract_code,
            "group_variable_get_conditional",
            additional_variables=variables,
            run_namespace=run_namespace,
            codeobj_class=device.code_object_class(
                fallback_pref="codegen.string_expression_target"
            ),
        )
        return codeobj()

    @device_override("variableview_get_with_index_array")
    def get_with_index_array(self, item):
        variable = self.variable
        if variable.scalar:
            if not (isinstance(item, slice) and item == slice(None)):
                raise IndexError(
                    f"Illegal index for variable '{self.name}', it is a "
                    "scalar variable."
                )
            indices = 0
        elif (
            isinstance(item, slice) and item == slice(None) and self.index_var == "_idx"
        ):
            indices = slice(None)
        # Quick fix for matplotlib calling 1-d variables as var[:, np.newaxis]
        # The test is a bit verbose, but we need to avoid comparisons that raise errors
        # (e.g. comparing an array to slice(None))
        elif (
            isinstance(item, tuple)
            and len(item) == 2
            and isinstance(item[0], slice)
            and item[0] == slice(None)
            and item[1] is None
        ):
            if self.index_var == "_idx":
                return variable.get_value()[item]
            else:
                return variable.get_value()[self.index_var.get_value()][item]
        else:
            indices = self.indexing(item, self.index_var)

        return variable.get_value()[indices]

    @device_override("variableview_get_subexpression_with_index_array")
    def get_subexpression_with_index_array(self, item, run_namespace):
        variable = self.variable
        if variable.scalar:
            if not (isinstance(item, slice) and item == slice(None)):
                raise IndexError(
                    f"Illegal index for variable '{self.name}', it is a "
                    "scalar variable."
                )
            indices = np.array(0)
        else:
            indices = self.indexing(item, self.index_var)

        # For "normal" variables, we can directly access the underlying data
        # and use the usual slicing syntax. For subexpressions, however, we
        # have to evaluate code for the given indices
        variables = Variables(None, default_index="_group_index")
        variables.add_auxiliary_variable(
            "_variable",
            dimensions=variable.dim,
            dtype=variable.dtype,
            scalar=variable.scalar,
        )
        if indices.shape == ():
            single_index = True
            indices = np.array([indices])
        else:
            single_index = False
        variables.add_array("_group_idx", size=len(indices), dtype=np.int32)
        variables["_group_idx"].set_value(indices)
        # Force the use of this variable as a replacement for the original
        # index variable
        using_orig_index = [
            varname
            for varname, index in self.group.variables.indices.items()
            if index == self.index_var_name and index != "0"
        ]
        for varname in using_orig_index:
            variables.indices[varname] = "_idx"

        abstract_code = f"_variable = {self.name}\n"
        from brian2.codegen.codeobject import create_runner_codeobj
        from brian2.devices.device import get_device

        device = get_device()
        codeobj = create_runner_codeobj(
            self.group,
            abstract_code,
            "group_variable_get",
            # Setting the user code to an empty
            # string suppresses warnings if the
            # subexpression refers to variable
            # names that are also present in the
            # local namespace
            user_code="",
            needed_variables=["_group_idx"],
            additional_variables=variables,
            run_namespace=run_namespace,
            codeobj_class=device.code_object_class(
                fallback_pref="codegen.string_expression_target"
            ),
        )
        result = codeobj()
        if single_index and not variable.scalar:
            return result[0]
        else:
            return result

    @device_override("variableview_set_with_index_array")
    def set_with_index_array(self, item, value, check_units):
        variable = self.variable
        if check_units:
            fail_for_dimension_mismatch(
                variable.dim, value, f"Incorrect unit for setting variable {self.name}"
            )
        if variable.scalar:
            if not (isinstance(item, slice) and item == slice(None)):
                raise IndexError(
                    "Illegal index for variable '{self.name}', it is a scalar variable."
                )
            indices = 0
        elif (
            isinstance(item, slice) and item == slice(None) and self.index_var == "_idx"
        ):
            indices = slice(None)
        else:
            indices = self.indexing(item, self.index_var)

            q = Quantity(value)
            if len(q.shape):
                if not len(q.shape) == 1 or len(q) != 1 and len(q) != len(indices):
                    raise ValueError(
                        "Provided values do not match the size "
                        "of the indices, "
                        f"{len(q)} != {len(indices)}."
                    )
        variable.get_value()[indices] = value

    # Allow some basic calculations directly on the ArrayView object
    def __array__(self, dtype=None, copy=None):
        try:
            # This will fail for subexpressions that refer to external
            # parameters
            values = self[:]
            # Never hand over copy = None
            return np.array(values, dtype=dtype, copy=copy is not False, subok=True)
        except ValueError:
            var = self.variable.name
            raise ValueError(
                f"Cannot get the values for variable {var}. If it "
                "is a subexpression referring to external "
                f"variables, use 'group.{var}[:]' instead of "
                f"'group.{var}'"
            )

    def __array__ufunc__(self, ufunc, method, *inputs, **kwargs):
        if method == "__call__":
            return ufunc(self[:], *inputs, **kwargs)
        else:
            return NotImplemented

    def __len__(self):
        return len(self.get_item(slice(None), level=1))

    def __neg__(self):
        return -self.get_item(slice(None), level=1)

    def __pos__(self):
        return self.get_item(slice(None), level=1)

    def __add__(self, other):
        return self.get_item(slice(None), level=1) + np.asanyarray(other)

    def __radd__(self, other):
        return np.asanyarray(other) + self.get_item(slice(None), level=1)

    def __sub__(self, other):
        return self.get_item(slice(None), level=1) - np.asanyarray(other)

    def __rsub__(self, other):
        return np.asanyarray(other) - self.get_item(slice(None), level=1)

    def __mul__(self, other):
        return self.get_item(slice(None), level=1) * np.asanyarray(other)

    def __rmul__(self, other):
        return np.asanyarray(other) * self.get_item(slice(None), level=1)

    def __div__(self, other):
        return self.get_item(slice(None), level=1) / np.asanyarray(other)

    def __truediv__(self, other):
        return self.get_item(slice(None), level=1) / np.asanyarray(other)

    def __floordiv__(self, other):
        return self.get_item(slice(None), level=1) // np.asanyarray(other)

    def __rdiv__(self, other):
        return np.asanyarray(other) / self.get_item(slice(None), level=1)

    def __rtruediv__(self, other):
        return np.asanyarray(other) / self.get_item(slice(None), level=1)

    def __rfloordiv__(self, other):
        return np.asanyarray(other) // self.get_item(slice(None), level=1)

    def __mod__(self, other):
        return self.get_item(slice(None), level=1) % np.asanyarray(other)

    def __pow__(self, power, modulo=None):
        if modulo is not None:
            return self.get_item(slice(None), level=1) ** power % modulo
        else:
            return self.get_item(slice(None), level=1) ** power

    def __rpow__(self, other):
        if self.dim is not DIMENSIONLESS:
            raise TypeError(
                f"Cannot use '{self.name}' as an exponent, it has "
                f"dimensions {get_unit_for_display(self.unit)}."
            )
        return other ** self.get_item(slice(None), level=1)

    def __iadd__(self, other):
        if isinstance(other, str):
            raise TypeError(
                "In-place modification with strings not "
                "supported. Use group.var = 'var + expression' "
                "instead of group.var += 'expression'."
            )
        elif isinstance(self.variable, Subexpression):
            raise TypeError("Cannot assign to a subexpression.")
        else:
            rhs = self[:] + np.asanyarray(other)
        self[:] = rhs
        return self

    # Support matrix multiplication with @
    def __matmul__(self, other):
        return self.get_item(slice(None), level=1) @ np.asanyarray(other)

    def __rmatmul__(self, other):
        return np.asanyarray(other) @ self.get_item(slice(None), level=1)

    def __isub__(self, other):
        if isinstance(other, str):
            raise TypeError(
                "In-place modification with strings not "
                "supported. Use group.var = 'var - expression' "
                "instead of group.var -= 'expression'."
            )
        elif isinstance(self.variable, Subexpression):
            raise TypeError("Cannot assign to a subexpression.")
        else:
            rhs = self[:] - np.asanyarray(other)
        self[:] = rhs
        return self

    def __imul__(self, other):
        if isinstance(other, str):
            raise TypeError(
                "In-place modification with strings not "
                "supported. Use group.var = 'var * expression' "
                "instead of group.var *= 'expression'."
            )
        elif isinstance(self.variable, Subexpression):
            raise TypeError("Cannot assign to a subexpression.")
        else:
            rhs = self[:] * np.asanyarray(other)
        self[:] = rhs
        return self

    def __idiv__(self, other):
        if isinstance(other, str):
            raise TypeError(
                "In-place modification with strings not "
                "supported. Use group.var = 'var / expression' "
                "instead of group.var /= 'expression'."
            )
        elif isinstance(self.variable, Subexpression):
            raise TypeError("Cannot assign to a subexpression.")
        else:
            rhs = self[:] / np.asanyarray(other)
        self[:] = rhs
        return self

    def __ifloordiv__(self, other):
        if isinstance(other, str):
            raise TypeError(
                "In-place modification with strings not "
                "supported. Use group.var = 'var // expression' "
                "instead of group.var //= 'expression'."
            )
        elif isinstance(self.variable, Subexpression):
            raise TypeError("Cannot assign to a subexpression.")
        else:
            rhs = self[:] // np.asanyarray(other)
        self[:] = rhs
        return self

    def __imod__(self, other):
        if isinstance(other, str):
            raise TypeError(
                "In-place modification with strings not "
                "supported. Use group.var = 'var // expression' "
                "instead of group.var //= 'expression'."
            )
        elif isinstance(self.variable, Subexpression):
            raise TypeError("Cannot assign to a subexpression.")
        else:
            rhs = self[:] % np.asanyarray(other)
        self[:] = rhs
        return self

    def __ipow__(self, other):
        if isinstance(other, str):
            raise TypeError(
                "In-place modification with strings not "
                "supported. Use group.var = 'var ** expression' "
                "instead of group.var **= 'expression'."
            )
        elif isinstance(self.variable, Subexpression):
            raise TypeError("Cannot assign to a subexpression.")
        else:
            rhs = self[:] ** np.asanyarray(other)
        self[:] = rhs
        return self

    # Also allow logical comparisons

    def __eq__(self, other):
        return self.get_item(slice(None), level=1) == np.asanyarray(other)

    def __ne__(self, other):
        return self.get_item(slice(None), level=1) != np.asanyarray(other)

    def __lt__(self, other):
        return self.get_item(slice(None), level=1) < np.asanyarray(other)

    def __le__(self, other):
        return self.get_item(slice(None), level=1) <= np.asanyarray(other)

    def __gt__(self, other):
        return self.get_item(slice(None), level=1) > np.asanyarray(other)

    def __ge__(self, other):
        return self.get_item(slice(None), level=1) >= np.asanyarray(other)

    def __repr__(self):
        varname = self.name
        if self.dim is None:
            varname += "_"

        if self.variable.scalar:
            dim = self.dim if self.dim is not None else DIMENSIONLESS
            values = repr(Quantity(self.variable.get_value().item(), dim=dim))
        else:
            try:
                # This will fail for subexpressions that refer to external
                # parameters
                values = repr(self[:])
            except KeyError:
                values = (
                    "[Subexpression refers to external parameters. Use "
                    f"'group.{self.variable.name}[:]']"
                )

        return f"<{self.group_name}.{varname}: {values}>"

    def __hash__(self):
        return hash((self.group_name, self.name))

    # Get access to some basic properties of the underlying array
    @property
    def shape(self):
        if self.ndim == 1:
            if not self.variable.scalar:
                # This is safer than using the variable size, since it also works for subgroups
                # see GitHub issue #1555
                size = self.group.stop - self.group.start
                assert size <= self.variable.size
            else:
                size = self.variable.size

            return (size,)
        else:
            return self.variable.size

    @property
    def ndim(self):
        return getattr(self.variable, "ndim", 1)

    @property
    def dtype(self):
        return self.variable.dtype


class Variables(Mapping):
    """
    A container class for storing `Variable` objects. Instances of this class
    are used as the `Group.variables` attribute and can be accessed as
    (read-only) dictionaries.

    Parameters
    ----------
    owner : `Nameable`
        The object (typically a `Group`) "owning" the variables.
    default_index : str, optional
        The index to use for the variables (only relevant for `ArrayVariable`
        and `DynamicArrayVariable`). Defaults to ``'_idx'``.
    """

    def __init__(self, owner, default_index="_idx"):
        #: A reference to the `Group` owning these variables
        self.owner = weakproxy_with_fallback(owner)
        # The index that is used for arrays if no index is given explicitly
        self.default_index = default_index

        # We do the import here to avoid a circular dependency.
        from brian2.devices.device import get_device

        self.device = get_device()

        self._variables = {}
        #: A dictionary given the index name for every array name
        self.indices = collections.defaultdict(functools.partial(str, default_index))
        # Note that by using functools.partial (instead of e.g. a lambda
        # function) above, this object remains pickable.

    def __getstate__(self):
        state = self.__dict__.copy()
        state["owner"] = state["owner"].__repr__.__self__
        return state

    def __setstate__(self, state):
        state["owner"] = weakproxy_with_fallback(state["owner"])
        self.__dict__ = state

    def __getitem__(self, item):
        return self._variables[item]

    def __len__(self):
        return len(self._variables)

    def __iter__(self):
        return iter(self._variables)

    def _add_variable(self, name, var, index=None):
        if name in self._variables:
            raise KeyError(
                f"The name '{name}' is already present in the variables dictionary."
            )
        # TODO: do some check for the name, part of it has to be device-specific
        self._variables[name] = var

        if isinstance(var, ArrayVariable):
            # Tell the device to actually create the array (or note it down for
            # later code generation in standalone).
            self.device.add_array(var)

        if getattr(var, "scalar", False):
            if index not in (None, "0"):
                raise ValueError("Cannot set an index for a scalar variable")
            self.indices[name] = "0"

        if index is not None:
            self.indices[name] = index

    def add_array(
        self,
        name,
        size,
        dimensions=DIMENSIONLESS,
        values=None,
        dtype=None,
        constant=False,
        read_only=False,
        scalar=False,
        unique=False,
        index=None,
    ):
        """
        Add an array (initialized with zeros).

        Parameters
        ----------
        name : str
            The name of the variable.
        dimensions : `Dimension`, optional
            The physical dimensions of the variable.
        size : int
            The size of the array.
        values : `ndarray`, optional
            The values to initalize the array with. If not specified, the array
            is initialized to zero.
        dtype : `dtype`, optional
            The dtype used for storing the variable. If none is given, defaults
            to `core.default_float_dtype`.
        constant : bool, optional
            Whether the variable's value is constant during a run.
            Defaults to ``False``.
        scalar : bool, optional
            Whether this is a scalar variable. Defaults to ``False``, if set to
            ``True``, also implies that `size` equals 1.
        read_only : bool, optional
            Whether this is a read-only variable, i.e. a variable that is set
            internally and cannot be changed by the user. Defaults
            to ``False``.
        index : str, optional
            The index to use for this variable. Defaults to
            `Variables.default_index`.
        unique : bool, optional
            See `ArrayVariable`. Defaults to ``False``.
        """
        if np.asanyarray(size).shape == ():
            # We want a basic Python type for the size instead of something
            # like numpy.int64
            size = int(size)
        var = ArrayVariable(
            name=name,
            dimensions=dimensions,
            owner=self.owner,
            device=self.device,
            size=size,
            dtype=dtype,
            constant=constant,
            scalar=scalar,
            read_only=read_only,
            unique=unique,
        )
        self._add_variable(name, var, index)
        # This could be avoided, but we currently need it so that standalone
        # allocates the memory
        self.device.init_with_zeros(var, dtype)
        if values is not None:
            if scalar:
                if np.asanyarray(values).shape != ():
                    raise ValueError("Need a scalar value.")
                self.device.fill_with_array(var, values)
            else:
                if len(values) != size:
                    raise ValueError(
                        "Size of the provided values does not match "
                        f"size: {len(values)} != {size}"
                    )
                self.device.fill_with_array(var, values)

    def add_arrays(
        self,
        names,
        size,
        dimensions=DIMENSIONLESS,
        dtype=None,
        constant=False,
        read_only=False,
        scalar=False,
        unique=False,
        index=None,
    ):
        """
        Adds several arrays (initialized with zeros) with the same attributes
        (size, units, etc.).

        Parameters
        ----------
        names : list of str
            The names of the variable.
        dimensions : `Dimension`, optional
            The physical dimensions of the variable.
        size : int
            The sizes of the arrays.
        dtype : `dtype`, optional
            The dtype used for storing the variables. If none is given, defaults
            to `core.default_float_dtype`.
        constant : bool, optional
            Whether the variables' values are constant during a run.
            Defaults to ``False``.
        scalar : bool, optional
            Whether these are scalar variables. Defaults to ``False``, if set to
            ``True``, also implies that `size` equals 1.
        read_only : bool, optional
            Whether these are read-only variables, i.e. variables that are set
            internally and cannot be changed by the user. Defaults
            to ``False``.
        index : str, optional
            The index to use for these variables. Defaults to
            `Variables.default_index`.
        unique : bool, optional
            See `ArrayVariable`. Defaults to ``False``.
        """
        for name in names:
            self.add_array(
                name,
                dimensions=dimensions,
                size=size,
                dtype=dtype,
                constant=constant,
                read_only=read_only,
                scalar=scalar,
                unique=unique,
                index=index,
            )

    def add_dynamic_array(
        self,
        name,
        size,
        dimensions=DIMENSIONLESS,
        values=None,
        dtype=None,
        constant=False,
        needs_reference_update=False,
        resize_along_first=False,
        read_only=False,
        unique=False,
        scalar=False,
        index=None,
    ):
        """
        Add a dynamic array.

        Parameters
        ----------
        name : str
            The name of the variable.
        dimensions : `Dimension`, optional
            The physical dimensions of the variable.
        size : int or tuple of int
            The (initital) size of the array.
        values : `ndarray`, optional
            The values to initalize the array with. If not specified, the array
            is initialized to zero.
        dtype : `dtype`, optional
            The dtype used for storing the variable. If none is given, defaults
            to `core.default_float_dtype`.
        constant : bool, optional
            Whether the variable's value is constant during a run.
            Defaults to ``False``.
        needs_reference_update : bool, optional
            Whether the code objects need a new reference to the underlying data at
            every time step. This should be set if the size of the array can be
            changed by other code objects. Defaults to ``False``.
        scalar : bool, optional
            Whether this is a scalar variable. Defaults to ``False``, if set to
            ``True``, also implies that `size` equals 1.
        read_only : bool, optional
            Whether this is a read-only variable, i.e. a variable that is set
            internally and cannot be changed by the user. Defaults
            to ``False``.
        index : str, optional
            The index to use for this variable. Defaults to
            `Variables.default_index`.
        unique : bool, optional
            See `DynamicArrayVariable`. Defaults to ``False``.
        """
        var = DynamicArrayVariable(
            name=name,
            dimensions=dimensions,
            owner=self.owner,
            device=self.device,
            size=size,
            dtype=dtype,
            constant=constant,
            needs_reference_update=needs_reference_update,
            resize_along_first=resize_along_first,
            scalar=scalar,
            read_only=read_only,
            unique=unique,
        )
        self._add_variable(name, var, index)
        if np.prod(size) > 0:
            self.device.resize(var, size)
        if values is None and np.prod(size) > 0:
            self.device.init_with_zeros(var, dtype)
        elif values is not None:
            if len(values) != size:
                raise ValueError(
                    "Size of the provided values does not match "
                    f"size: {len(values)} != {size}"
                )
            if np.prod(size) > 0:
                self.device.fill_with_array(var, values)

    def add_arange(
        self,
        name,
        size,
        start=0,
        dtype=np.int32,
        constant=True,
        read_only=True,
        unique=True,
        index=None,
    ):
        """
        Add an array, initialized with a range of integers.

        Parameters
        ----------
        name : str
            The name of the variable.
        size : int
            The size of the array.
        start : int
            The start value of the range.
        dtype : `dtype`, optional
            The dtype used for storing the variable. If none is given, defaults
            to `np.int32`.
        constant : bool, optional
            Whether the variable's value is constant during a run.
            Defaults to ``True``.
        read_only : bool, optional
            Whether this is a read-only variable, i.e. a variable that is set
            internally and cannot be changed by the user. Defaults
            to ``True``.
        index : str, optional
            The index to use for this variable. Defaults to
            `Variables.default_index`.
        unique : bool, optional
            See `ArrayVariable`. Defaults to ``True`` here.
        """
        self.add_array(
            name=name,
            dimensions=DIMENSIONLESS,
            size=size,
            dtype=dtype,
            constant=constant,
            read_only=read_only,
            unique=unique,
            index=index,
        )
        self.device.init_with_arange(self._variables[name], start, dtype=dtype)

    def add_constant(self, name, value, dimensions=DIMENSIONLESS):
        """
        Add a scalar constant (e.g. the number of neurons `N`).

        Parameters
        ----------
        name : str
            The name of the variable
        value: reference to the variable value
            The value of the constant.
        dimensions : `Dimension`, optional
            The physical dimensions of the variable. Note that the variable
            itself (as referenced by value) should never have units attached.
        """
        var = Constant(name=name, dimensions=dimensions, owner=self.owner, value=value)
        self._add_variable(name, var)

    def add_subexpression(
        self, name, expr, dimensions=DIMENSIONLESS, dtype=None, scalar=False, index=None
    ):
        """
        Add a named subexpression.

        Parameters
        ----------
        name : str
            The name of the subexpression.
        dimensions : `Dimension`
            The physical dimensions of the subexpression.
        expr : str
            The subexpression itself.
        dtype : `dtype`, optional
            The dtype used for the expression. Defaults to
            `core.default_float_dtype`.
        scalar : bool, optional
            Whether this is an expression only referring to scalar variables.
            Defaults to ``False``
        index : str, optional
            The index to use for this variable. Defaults to
            `Variables.default_index`.
        """
        var = Subexpression(
            name=name,
            dimensions=dimensions,
            expr=expr,
            owner=self.owner,
            dtype=dtype,
            device=self.device,
            scalar=scalar,
        )
        self._add_variable(name, var, index=index)

    def add_auxiliary_variable(
        self, name, dimensions=DIMENSIONLESS, dtype=None, scalar=False
    ):
        """
        Add an auxiliary variable (most likely one that is added automatically
        to abstract code, e.g. ``_cond`` for a threshold condition),
        specifying its type and unit for code generation.

        Parameters
        ----------
        name : str
            The name of the variable
        dimensions : `Dimension`
            The physical dimensions of the variable.
        dtype : `dtype`, optional
            The dtype used for storing the variable. If none is given, defaults
            to `core.default_float_dtype`.
        scalar : bool, optional
            Whether the variable is a scalar value (``True``) or vector-valued,
            e.g. defined for every neuron (``False``). Defaults to ``False``.
        """
        var = AuxiliaryVariable(
            name=name, dimensions=dimensions, dtype=dtype, scalar=scalar
        )
        self._add_variable(name, var)

    def add_referred_subexpression(self, name, group, subexpr, index):
        identifiers = subexpr.identifiers
        substitutions = {}
        for identifier in identifiers:
            if identifier not in subexpr.owner.variables:
                # external variable --> nothing to do
                continue
            subexpr_var = subexpr.owner.variables[identifier]
            if hasattr(subexpr_var, "owner"):
                new_name = f"_{name}_{subexpr.owner.name}_{identifier}"
            else:
                new_name = f"_{name}_{identifier}"
            substitutions[identifier] = new_name

            subexpr_var_index = group.variables.indices[identifier]
            if subexpr_var_index == group.variables.default_index:
                subexpr_var_index = index
            elif subexpr_var_index == "0":
                pass  # nothing to do for a shared variable
            elif subexpr_var_index == index:
                pass  # The same index as the main subexpression
            elif index != self.default_index:
                index_var = self._variables.get(index, None)
                if isinstance(index_var, DynamicArrayVariable):
                    raise TypeError(
                        f"Cannot link to subexpression '{name}': it refers "
                        f"to the variable '{identifier}' which is indexed "
                        f"with the dynamic index '{subexpr_var_index}'."
                    )
            else:
                self.add_reference(subexpr_var_index, group)

            self.indices[new_name] = subexpr_var_index

            if isinstance(subexpr_var, Subexpression):
                self.add_referred_subexpression(
                    new_name, group, subexpr_var, subexpr_var_index
                )
            else:
                self.add_reference(new_name, group, identifier, subexpr_var_index)

        new_expr = word_substitute(subexpr.expr, substitutions)
        new_subexpr = Subexpression(
            name,
            self.owner,
            new_expr,
            dimensions=subexpr.dim,
            device=subexpr.device,
            dtype=subexpr.dtype,
            scalar=subexpr.scalar,
        )
        self._variables[name] = new_subexpr

    def add_reference(self, name, group, varname=None, index=None):
        """
        Add a reference to a variable defined somewhere else (possibly under
        a different name). This is for example used in `Subgroup` and
        `Synapses` to refer to variables in the respective `NeuronGroup`.

        Parameters
        ----------
        name : str
            The name of the variable (in this group, possibly a different name
            from `var.name`).
        group : `Group`
            The group from which `var` is referenced
        varname : str, optional
            The variable to refer to. If not given, defaults to `name`.
        index : str, optional
            The index that should be used for this variable (defaults to
            `Variables.default_index`).
        """
        if varname is None:
            varname = name
        if varname not in group.variables:
            raise KeyError(f"Group {group.name} does not have a variable {varname}.")
        if index is None:
            if group.variables[varname].scalar:
                index = "0"
            else:
                index = self.default_index

        if (
            self.owner is not None
            and self.owner.name != group.name
            and index in self.owner.variables
        ):
            if (
                not self.owner.variables[index].read_only
                or isinstance(self.owner.variables[index], DynamicArrayVariable)
            ) and group.variables.indices[varname] != group.variables.default_index:
                raise TypeError(
                    f"Cannot link variable '{name}' to '{varname}' in "
                    f"group '{group.name}' -- need to precalculate "
                    f"direct indices but index {index} can change"
                )

        # We don't overwrite existing names with references
        if name not in self._variables:
            var = group.variables[varname]
            if isinstance(var, Subexpression):
                self.add_referred_subexpression(name, group, var, index)
            else:
                self._variables[name] = var
            self.indices[name] = index

    def add_references(self, group, varnames, index=None):
        """
        Add all `Variable` objects from a name to `Variable` mapping with the
        same name as in the original mapping.

        Parameters
        ----------
        group : `Group`
            The group from which the `variables` are referenced
        varnames : iterable of str
            The variables that should be referred to in the current group
        index : str, optional
            The index to use for all the variables (defaults to
            `Variables.default_index`)
        """
        for name in varnames:
            self.add_reference(name, group, name, index)

    def add_object(self, name, obj):
        """
        Add an arbitrary Python object. This is only meant for internal use
        and therefore only names starting with an underscore are allowed.

        Parameters
        ----------
        name : str
            The name used for this object (has to start with an underscore).
        obj : object
            An arbitrary Python object that needs to be accessed directly from
            a `CodeObject`.
        """
        if not name.startswith("_"):
            raise ValueError(
                "This method is only meant for internally used "
                "objects, the name therefore has to start with "
                "an underscore"
            )
        self._variables[name] = obj

    def create_clock_variables(self, clock, prefix=""):
        """
        Convenience function to add the ``t`` and ``dt`` attributes of a
        `clock`.

        Parameters
        ----------
        clock : `Clock`
            The clock that should be used for ``t`` and ``dt``.
        prefix : str, optional
            A prefix for the variable names. Used for example in monitors to
            not confuse the dynamic array of recorded times with the current
            time in the recorded group.
        """
        self.add_reference(f"{prefix}t", clock, "t")
        self.add_reference(f"{prefix}dt", clock, "dt")
        self.add_reference(f"{prefix}t_in_timesteps", clock, "timestep")