File: spatialstateupdate.cpp

package info (click to toggle)
brian 2.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,872 kB
  • sloc: python: 51,820; cpp: 2,033; makefile: 108; sh: 72
file content (229 lines) | stat: -rw-r--r-- 9,246 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
{# USES_VARIABLES { Cm, dt, v, N, Ic, Ri,
                  _ab_star0, _ab_star1, _ab_star2, _b_plus, _b_minus,
                  _v_star, _u_plus, _u_minus,
                  _v_previous,
                  _gtot_all, _I0_all,
                  _c,
                  _P_diag, _P_parent, _P_children,
                  _B, _morph_parent_i, _starts, _ends,
                  _morph_children, _morph_children_num, _morph_idxchild,
                  _invr0, _invrn, _invr,
                  r_length_1, r_length_2, area } #}
{% extends 'common_group.cpp' %}

{% block before_code %}
    const double _Ri = {{Ri}};  // Ri is a shared variable

    // Inverse axial resistance
    {{ openmp_pragma('parallel-static') }}
    for (int _i=1; _i<N; _i++)
        {{_invr}}[_i] = 1.0/(_Ri*(1/{{r_length_2}}[_i-1] + 1/{{r_length_1}}[_i]));
    // Cut sections
    {{ openmp_pragma('parallel-static') }}
    for (int _i=0; _i<(int)_num_starts; _i++)
        {{_invr}}[{{_starts}}[_i]] = 0;

    // Linear systems
    // The particular solution
    // a[i,j]=ab[u+i-j,j]   --  u is the number of upper diagonals = 1
    {{ openmp_pragma('parallel-static') }}
    for (int _i=0; _i<N; _i++)
        {{_ab_star1}}[_i] = (-({{Cm}}[_i] / {{dt}}) - {{_invr}}[_i] / {{area}}[_i]);
    {{ openmp_pragma('parallel-static') }}
    for (int _i=1; _i<N; _i++)
    {
        {{_ab_star0}}[_i] = {{_invr}}[_i] / {{area}}[_i-1];
        {{_ab_star2}}[_i-1] = {{_invr}}[_i] / {{area}}[_i];
        {{_ab_star1}}[_i-1] -= {{_invr}}[_i] / {{area}}[_i-1];
    }

    // Set the boundary conditions
    for (size_t _counter=0; _counter<_num_starts; _counter++)
    {
        const int _first = {{_starts}}[_counter];
        const int _last = {{_ends}}[_counter] - 1;  // the compartment indices are in the interval [starts, ends[
        // Inverse axial resistances at the ends: r0 and rn
        const double _invr0 = {{r_length_1}}[_first]/_Ri;
        const double _invrn = {{r_length_2}}[_last]/_Ri;
        {{_invr0}}[_counter] = _invr0;
        {{_invrn}}[_counter] = _invrn;
        // Correction for boundary conditions
        {{_ab_star1}}[_first] -= (_invr0 / {{area}}[_first]);
        {{_ab_star1}}[_last] -= (_invrn / {{area}}[_last]);
        // RHS for homogeneous solutions
        {{_b_plus}}[_last] = -(_invrn / {{area}}[_last]);
        {{_b_minus}}[_first] = -(_invr0 / {{area}}[_first]);
    }
{% endblock %}

{% block maincode %}

    int _vectorisation_idx = 1;

    //// MAIN CODE ////////////
    {{scalar_code|autoindent}}

    // STEP 1: compute g_total and I_0 (independent: compartments)
    {{ openmp_pragma('parallel-static') }}
    for(int i=0; i<N; i++)
    {
        const int _idx = i;
        _vectorisation_idx = _idx;

        {{vector_code|autoindent}}
        {{_gtot_all}}[_idx] = _gtot;
        {{_I0_all}}[_idx] = _I0;

        {{_v_previous}}[_idx] = {{v}}[_idx];
    }

    // STEP 2: for each section: solve three tridiagonal systems
    // (independent: branches)

    {{ openmp_pragma('parallel-static') }}
    for (int _i=0; _i<(int)_num_B - 1; _i++)
    {
        // first and last index of the i-th section
        const int _j_start = {{_starts}}[_i];
        const int _j_end = {{_ends}}[_i];

        double _ai, _bi, _m; // helper variables

        // upper triangularization of tridiagonal system for _v_star, _u_plus, and _u_minus
        for(int _j=_j_start; _j<_j_end; _j++)
        {
            {{_v_star}}[_j]=-({{Cm}}[_j]/{{dt}}*{{v}}[_j])-{{_I0_all}}[_j]; // RHS -> _v_star (solution)
            {{_u_plus}}[_j]={{_b_plus}}[_j]; // RHS -> _u_plus (solution)
            {{_u_minus}}[_j]={{_b_minus}}[_j]; // RHS -> _u_minus (solution)
            _bi={{_ab_star1}}[_j]-{{_gtot_all}}[_j]; // main diagonal
            if (_j<N-1)
                {{_c}}[_j]={{_ab_star0}}[_j+1]; // superdiagonal
            if (_j>0)
            {
                _ai={{_ab_star2}}[_j-1]; // subdiagonal
                _m=1.0/(_bi-_ai*{{_c}}[_j-1]);
                {{_c}}[_j]={{_c}}[_j]*_m;
                {{_v_star}}[_j]=({{_v_star}}[_j] - _ai*{{_v_star}}[_j-1])*_m;
                {{_u_plus}}[_j]=({{_u_plus}}[_j] - _ai*{{_u_plus}}[_j-1])*_m;
                {{_u_minus}}[_j]=({{_u_minus}}[_j] - _ai*{{_u_minus}}[_j-1])*_m;
            } else
            {
                {{_c}}[0]={{_c}}[0]/_bi;
                {{_v_star}}[0]={{_v_star}}[0]/_bi;
                {{_u_plus}}[0]={{_u_plus}}[0]/_bi;
                {{_u_minus}}[0]={{_u_minus}}[0]/_bi;
            }
        }
        // backwards substituation of the upper triangularized system for _v_star
        for(int _j=_j_end-2; _j>=_j_start; _j--)
        {
            {{_v_star}}[_j]={{_v_star}}[_j] - {{_c}}[_j]*{{_v_star}}[_j+1];
            {{_u_plus}}[_j]={{_u_plus}}[_j] - {{_c}}[_j]*{{_u_plus}}[_j+1];
            {{_u_minus}}[_j]={{_u_minus}}[_j] - {{_c}}[_j]*{{_u_minus}}[_j+1];
        }
    }

    // STEP 3: solve the coupling system

    // indexing for _P_children which contains the elements above the diagonal of the coupling matrix _P
    const int _children_rowlength = _num_morph_children/_num_morph_children_num;
    #define _IDX_C(idx_row,idx_col) _children_rowlength * idx_row + idx_col

    // STEP 3a: construct the coupling system with matrix _P in sparse form. s.t. 
    // _P_diag contains the diagonal elements
    // _P_children contains the super diagonal entries
    // _P_parent contains the single sub diagonal entry for each row
    // _B contains the right hand side
    for (size_t _i=0; _i<_num_B - 1; _i++)
    {
        const int _i_parent = {{_morph_parent_i}}[_i];
        const int _i_childind = {{_morph_idxchild}}[_i];
        const int _first = {{_starts}}[_i];
        const int _last = {{_ends}}[_i] - 1;  // the compartment indices are in the interval [starts, ends[
        const double _invr0 = {{_invr0}}[_i];
        const double _invrn = {{_invrn}}[_i];

        // Towards parent
        if (_i == 0) // first section, sealed end
        {
            // sparse matrix version
            {{_P_diag}}[0] = {{_u_minus}}[_first] - 1;
            {{_P_children}}[_IDX_C(0,0)] = {{_u_plus}}[_first];

            // RHS
            {{_B}}[0] = -{{_v_star}}[_first];
        }
        else
        {
            // sparse matrix version
            {{_P_diag}}[_i_parent] += (1 - {{_u_minus}}[_first]) * _invr0;
            {{_P_children}}[_IDX_C(_i_parent, _i_childind)] = -{{_u_plus}}[_first] * _invr0;

            // RHS
            {{_B}}[_i_parent] += {{_v_star}}[_first] * _invr0;
        }

        // Towards children

        // sparse matrix version
        {{_P_diag}}[_i+1] = (1 - {{_u_plus}}[_last]) * _invrn;
        {{_P_parent}}[_i] = -{{_u_minus}}[_last] * _invrn;

        // RHS
        {{_B}}[_i+1] = {{_v_star}}[_last] * _invrn;
    }


    // STEP 3b: solve the linear system (the result will be stored in the former rhs _B in the end)
    // use efficient O(n) solution of the sparse linear system (structure-specific Gaussian elemination)

    // part 1: lower triangularization
    for (int _i=_num_B-1; _i>=0; _i--) {
        const int _num_children = {{_morph_children_num}}[_i];
        
        // for every child eliminate the corresponding matrix element of row i
        for (size_t _k=0; _k<_num_children; _k++) {
            int _j = {{_morph_children}}[_IDX_C(_i,_k)]; // child index
            
            // subtracting _subfac times the j-th from the i-th row
            double _subfac = {{_P_children}}[_IDX_C(_i,_k)] / {{_P_diag}}[_j]; // element i,j appears only here

            // the following commented (superdiagonal) element is not used in the following anymore since 
            // it is 0 by definition of (lower) triangularization; we keep it here for algorithmic clarity
            //{{_P_children}}[_IDX_C(_i,_k)] = {{_P_children}}[_IDX_C(_i,_k)]  - _subfac * {{_P_diag}}[_j]; // = 0;

            {{_P_diag}}[_i] = {{_P_diag}}[_i]  - _subfac * {{_P_parent}}[_j-1]; // note: element j,i is only used here
            {{_B}}[_i] = {{_B}}[_i] - _subfac * {{_B}}[_j];
        
        }
    }

    // part 2: forwards substitution
    {{_B}}[0] = {{_B}}[0] / {{_P_diag}}[0]; // the first section does not have a parent
    for (int _i=1; _i<_num_B; _i++) {
        const int _j = {{_morph_parent_i}}[_i-1]; // parent index
        {{_B}}[_i] = {{_B}}[_i] - {{_P_parent}}[_i-1] * {{_B}}[_j];
        {{_B}}[_i] = {{_B}}[_i] / {{_P_diag}}[_i];
        
    }

    // STEP 4: for each section compute the final solution by linear
    // combination of the general solution (independent: sections & compartments)
    for (size_t _i=0; _i<_num_B - 1; _i++)
    {
        const int _i_parent = {{_morph_parent_i}}[_i];
        const int _j_start = {{_starts}}[_i];
        const int _j_end = {{_ends}}[_i];
        for (int _j=_j_start; _j<_j_end; _j++)
            if (_j < _numv)  // don't go beyond the last element
                {{v}}[_j] = {{_v_star}}[_j] + {{_B}}[_i_parent] * {{_u_minus}}[_j]
                                           + {{_B}}[_i+1] * {{_u_plus}}[_j];
    }

    {{ openmp_pragma('parallel-static') }}
    for (int _i=0; _i<N; _i++)
    {
        {{Ic}}[_i] = {{Cm}}[_i]*({{v}}[_i] - {{_v_previous}}[_i])/{{dt}};
    }

{% endblock %}