1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
{# USES_VARIABLES { Cm, dt, v, N, Ic, Ri,
_ab_star0, _ab_star1, _ab_star2, _b_plus, _b_minus,
_v_star, _u_plus, _u_minus,
_v_previous,
_gtot_all, _I0_all,
_c,
_P_diag, _P_parent, _P_children,
_B, _morph_parent_i, _starts, _ends,
_morph_children, _morph_children_num, _morph_idxchild,
_invr0, _invrn, _invr,
r_length_1, r_length_2, area } #}
{% extends 'common_group.cpp' %}
{% block before_code %}
const double _Ri = {{Ri}}; // Ri is a shared variable
// Inverse axial resistance
{{ openmp_pragma('parallel-static') }}
for (int _i=1; _i<N; _i++)
{{_invr}}[_i] = 1.0/(_Ri*(1/{{r_length_2}}[_i-1] + 1/{{r_length_1}}[_i]));
// Cut sections
{{ openmp_pragma('parallel-static') }}
for (int _i=0; _i<(int)_num_starts; _i++)
{{_invr}}[{{_starts}}[_i]] = 0;
// Linear systems
// The particular solution
// a[i,j]=ab[u+i-j,j] -- u is the number of upper diagonals = 1
{{ openmp_pragma('parallel-static') }}
for (int _i=0; _i<N; _i++)
{{_ab_star1}}[_i] = (-({{Cm}}[_i] / {{dt}}) - {{_invr}}[_i] / {{area}}[_i]);
{{ openmp_pragma('parallel-static') }}
for (int _i=1; _i<N; _i++)
{
{{_ab_star0}}[_i] = {{_invr}}[_i] / {{area}}[_i-1];
{{_ab_star2}}[_i-1] = {{_invr}}[_i] / {{area}}[_i];
{{_ab_star1}}[_i-1] -= {{_invr}}[_i] / {{area}}[_i-1];
}
// Set the boundary conditions
for (size_t _counter=0; _counter<_num_starts; _counter++)
{
const int _first = {{_starts}}[_counter];
const int _last = {{_ends}}[_counter] - 1; // the compartment indices are in the interval [starts, ends[
// Inverse axial resistances at the ends: r0 and rn
const double _invr0 = {{r_length_1}}[_first]/_Ri;
const double _invrn = {{r_length_2}}[_last]/_Ri;
{{_invr0}}[_counter] = _invr0;
{{_invrn}}[_counter] = _invrn;
// Correction for boundary conditions
{{_ab_star1}}[_first] -= (_invr0 / {{area}}[_first]);
{{_ab_star1}}[_last] -= (_invrn / {{area}}[_last]);
// RHS for homogeneous solutions
{{_b_plus}}[_last] = -(_invrn / {{area}}[_last]);
{{_b_minus}}[_first] = -(_invr0 / {{area}}[_first]);
}
{% endblock %}
{% block maincode %}
int _vectorisation_idx = 1;
//// MAIN CODE ////////////
{{scalar_code|autoindent}}
// STEP 1: compute g_total and I_0 (independent: compartments)
{{ openmp_pragma('parallel-static') }}
for(int i=0; i<N; i++)
{
const int _idx = i;
_vectorisation_idx = _idx;
{{vector_code|autoindent}}
{{_gtot_all}}[_idx] = _gtot;
{{_I0_all}}[_idx] = _I0;
{{_v_previous}}[_idx] = {{v}}[_idx];
}
// STEP 2: for each section: solve three tridiagonal systems
// (independent: branches)
{{ openmp_pragma('parallel-static') }}
for (int _i=0; _i<(int)_num_B - 1; _i++)
{
// first and last index of the i-th section
const int _j_start = {{_starts}}[_i];
const int _j_end = {{_ends}}[_i];
double _ai, _bi, _m; // helper variables
// upper triangularization of tridiagonal system for _v_star, _u_plus, and _u_minus
for(int _j=_j_start; _j<_j_end; _j++)
{
{{_v_star}}[_j]=-({{Cm}}[_j]/{{dt}}*{{v}}[_j])-{{_I0_all}}[_j]; // RHS -> _v_star (solution)
{{_u_plus}}[_j]={{_b_plus}}[_j]; // RHS -> _u_plus (solution)
{{_u_minus}}[_j]={{_b_minus}}[_j]; // RHS -> _u_minus (solution)
_bi={{_ab_star1}}[_j]-{{_gtot_all}}[_j]; // main diagonal
if (_j<N-1)
{{_c}}[_j]={{_ab_star0}}[_j+1]; // superdiagonal
if (_j>0)
{
_ai={{_ab_star2}}[_j-1]; // subdiagonal
_m=1.0/(_bi-_ai*{{_c}}[_j-1]);
{{_c}}[_j]={{_c}}[_j]*_m;
{{_v_star}}[_j]=({{_v_star}}[_j] - _ai*{{_v_star}}[_j-1])*_m;
{{_u_plus}}[_j]=({{_u_plus}}[_j] - _ai*{{_u_plus}}[_j-1])*_m;
{{_u_minus}}[_j]=({{_u_minus}}[_j] - _ai*{{_u_minus}}[_j-1])*_m;
} else
{
{{_c}}[0]={{_c}}[0]/_bi;
{{_v_star}}[0]={{_v_star}}[0]/_bi;
{{_u_plus}}[0]={{_u_plus}}[0]/_bi;
{{_u_minus}}[0]={{_u_minus}}[0]/_bi;
}
}
// backwards substituation of the upper triangularized system for _v_star
for(int _j=_j_end-2; _j>=_j_start; _j--)
{
{{_v_star}}[_j]={{_v_star}}[_j] - {{_c}}[_j]*{{_v_star}}[_j+1];
{{_u_plus}}[_j]={{_u_plus}}[_j] - {{_c}}[_j]*{{_u_plus}}[_j+1];
{{_u_minus}}[_j]={{_u_minus}}[_j] - {{_c}}[_j]*{{_u_minus}}[_j+1];
}
}
// STEP 3: solve the coupling system
// indexing for _P_children which contains the elements above the diagonal of the coupling matrix _P
const int _children_rowlength = _num_morph_children/_num_morph_children_num;
#define _IDX_C(idx_row,idx_col) _children_rowlength * idx_row + idx_col
// STEP 3a: construct the coupling system with matrix _P in sparse form. s.t.
// _P_diag contains the diagonal elements
// _P_children contains the super diagonal entries
// _P_parent contains the single sub diagonal entry for each row
// _B contains the right hand side
for (size_t _i=0; _i<_num_B - 1; _i++)
{
const int _i_parent = {{_morph_parent_i}}[_i];
const int _i_childind = {{_morph_idxchild}}[_i];
const int _first = {{_starts}}[_i];
const int _last = {{_ends}}[_i] - 1; // the compartment indices are in the interval [starts, ends[
const double _invr0 = {{_invr0}}[_i];
const double _invrn = {{_invrn}}[_i];
// Towards parent
if (_i == 0) // first section, sealed end
{
// sparse matrix version
{{_P_diag}}[0] = {{_u_minus}}[_first] - 1;
{{_P_children}}[_IDX_C(0,0)] = {{_u_plus}}[_first];
// RHS
{{_B}}[0] = -{{_v_star}}[_first];
}
else
{
// sparse matrix version
{{_P_diag}}[_i_parent] += (1 - {{_u_minus}}[_first]) * _invr0;
{{_P_children}}[_IDX_C(_i_parent, _i_childind)] = -{{_u_plus}}[_first] * _invr0;
// RHS
{{_B}}[_i_parent] += {{_v_star}}[_first] * _invr0;
}
// Towards children
// sparse matrix version
{{_P_diag}}[_i+1] = (1 - {{_u_plus}}[_last]) * _invrn;
{{_P_parent}}[_i] = -{{_u_minus}}[_last] * _invrn;
// RHS
{{_B}}[_i+1] = {{_v_star}}[_last] * _invrn;
}
// STEP 3b: solve the linear system (the result will be stored in the former rhs _B in the end)
// use efficient O(n) solution of the sparse linear system (structure-specific Gaussian elemination)
// part 1: lower triangularization
for (int _i=_num_B-1; _i>=0; _i--) {
const int _num_children = {{_morph_children_num}}[_i];
// for every child eliminate the corresponding matrix element of row i
for (size_t _k=0; _k<_num_children; _k++) {
int _j = {{_morph_children}}[_IDX_C(_i,_k)]; // child index
// subtracting _subfac times the j-th from the i-th row
double _subfac = {{_P_children}}[_IDX_C(_i,_k)] / {{_P_diag}}[_j]; // element i,j appears only here
// the following commented (superdiagonal) element is not used in the following anymore since
// it is 0 by definition of (lower) triangularization; we keep it here for algorithmic clarity
//{{_P_children}}[_IDX_C(_i,_k)] = {{_P_children}}[_IDX_C(_i,_k)] - _subfac * {{_P_diag}}[_j]; // = 0;
{{_P_diag}}[_i] = {{_P_diag}}[_i] - _subfac * {{_P_parent}}[_j-1]; // note: element j,i is only used here
{{_B}}[_i] = {{_B}}[_i] - _subfac * {{_B}}[_j];
}
}
// part 2: forwards substitution
{{_B}}[0] = {{_B}}[0] / {{_P_diag}}[0]; // the first section does not have a parent
for (int _i=1; _i<_num_B; _i++) {
const int _j = {{_morph_parent_i}}[_i-1]; // parent index
{{_B}}[_i] = {{_B}}[_i] - {{_P_parent}}[_i-1] * {{_B}}[_j];
{{_B}}[_i] = {{_B}}[_i] / {{_P_diag}}[_i];
}
// STEP 4: for each section compute the final solution by linear
// combination of the general solution (independent: sections & compartments)
for (size_t _i=0; _i<_num_B - 1; _i++)
{
const int _i_parent = {{_morph_parent_i}}[_i];
const int _j_start = {{_starts}}[_i];
const int _j_end = {{_ends}}[_i];
for (int _j=_j_start; _j<_j_end; _j++)
if (_j < _numv) // don't go beyond the last element
{{v}}[_j] = {{_v_star}}[_j] + {{_B}}[_i_parent] * {{_u_minus}}[_j]
+ {{_B}}[_i+1] * {{_u_plus}}[_j];
}
{{ openmp_pragma('parallel-static') }}
for (int _i=0; _i<N; _i++)
{
{{Ic}}[_i] = {{Cm}}[_i]*({{v}}[_i] - {{_v_previous}}[_i])/{{dt}};
}
{% endblock %}
|