File: synapses_create_generator.cpp

package info (click to toggle)
brian 2.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,872 kB
  • sloc: python: 51,820; cpp: 2,033; makefile: 108; sh: 72
file content (254 lines) | stat: -rw-r--r-- 11,195 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
{# USES_VARIABLES { _synaptic_pre, _synaptic_post, rand,
                    N_incoming, N_outgoing, N,
                    N_pre, N_post, _source_offset, _target_offset } #}

{# WRITES_TO_READ_ONLY_VARIABLES { _synaptic_pre, _synaptic_post,
                                   N_incoming, N_outgoing, N}
#}
{% extends 'common_synapses.cpp' %}

{% block extra_headers %}
{{ super() }}
#include <iostream>
#include <set>
{% endblock %}

{% block maincode %}
    {# Get N_post and N_pre in the correct way, regardless of whether they are
    constants or scalar arrays#}
    const size_t _N_pre = {{constant_or_scalar('N_pre', variables['N_pre'])}};
    const size_t _N_post = {{constant_or_scalar('N_post', variables['N_post'])}};
    {{_dynamic_N_incoming}}.resize(_N_post + _target_offset);
    {{_dynamic_N_outgoing}}.resize(_N_pre + _source_offset);
    size_t _raw_pre_idx, _raw_post_idx;
    {# For a connect call j='k+i for k in range(0, N_post, 2) if k+i < N_post'
    "j" is called the "result index" (and "_post_idx" the "result index array", etc.)
    "i" is called the "outer index" (and "_pre_idx" the "outer index array", etc.)
    "k" is called the inner variable #}
    
    // scalar code
    const size_t _vectorisation_idx = -1;
    {{scalar_code['setup_iterator']|autoindent}}
    {{scalar_code['generator_expr']|autoindent}}
    {{scalar_code['create_cond']|autoindent}}
    {{scalar_code['update']|autoindent}}
    for(size_t _{{outer_index}}=0; _{{outer_index}}<_{{outer_index_size}}; _{{outer_index}}++)
    {
        bool __cond, _cond;
        _raw{{outer_index_array}} = _{{outer_index}} + {{outer_index_offset}};
        {% if not result_index_condition %}
        {
            {{vector_code['create_cond']|autoindent}}
            __cond = _cond;
        }
        _cond = __cond;
        if(!_cond) continue;
        {% endif %}
        // Some explanation of this hackery. The problem is that we have multiple code blocks.
        // Each code block is generated independently of the others, and they declare variables
        // at the beginning if necessary (including declaring them as const if their values don't
        // change). However, if two code blocks follow each other in the same C++ scope then
        // that causes a redeclaration error. So we solve it by putting each block inside a
        // pair of braces to create a new scope specific to each code block. However, that brings
        // up another problem: we need the values from these code blocks. I don't have a general
        // solution to this problem, but in the case of this particular template, we know which
        // values we need from them so we simply create outer scoped variables to copy the value
        // into. Later on we have a slightly more complicated problem because the original name
        // _j has to be used, so we create two variables __j, _j at the outer scope, copy
        // _j to __j in the inner scope (using the inner scope version of _j), and then
        // __j to _j in the outer scope (to the outer scope version of _j). This outer scope
        // version of _j will then be used in subsequent blocks.
        long _uiter_low;
        long _uiter_high;
        long _uiter_step;
        {% if iterator_func=='sample' %}
        long _uiter_size;
        double _uiter_p;
        {% endif %}
        {
            {{vector_code['setup_iterator']|autoindent}}
            _uiter_low = _iter_low;
            _uiter_high = _iter_high;
            _uiter_step = _iter_step;
            {% if iterator_func=='sample' %}
            {% if iterator_kwds['sample_size'] == 'fixed' %}
            _uiter_size = _iter_size;
            {% else %}
            _uiter_p = _iter_p;
            {% endif %}
            {% endif %}
        }
        {% if iterator_func=='range' %}
        for(long {{inner_variable}}=_uiter_low; {{inner_variable}}<_uiter_high; {{inner_variable}}+=_uiter_step)
        {
        {% elif iterator_func=='sample' %}
        const int _iter_sign = _uiter_step > 0 ? 1 : -1;
        {% if iterator_kwds['sample_size'] == 'fixed' %}
        std::set<int> _selected_set = std::set<int>();
        std::set<int>::iterator _selected_it;
        int _n_selected = 0;
        int _n_dealt_with = 0;
        int _n_total;
        if (_uiter_step > 0)
            _n_total = (_uiter_high - _uiter_low - 1) / _uiter_step + 1;
        else
            _n_total = (_uiter_low - _uiter_high - 1) / -_uiter_step + 1;
        // Value determined by benchmarking, see github PR #1280
        const bool _selection_algo = 1.0*_uiter_size / _n_total > 0.06;
        if (_uiter_size > _n_total)
        {
            {% if skip_if_invalid %}
            _uiter_size = _n_total;
            {% else %}
            cout << "Error: Requested sample size " << _uiter_size << " is bigger than the " <<
                    "population size " << _n_total << "." << endl;
            exit(1);
            {% endif %}
        } else if (_uiter_size < 0)
        {
            {% if skip_if_invalid %}
            continue;
            {% else %}
            cout << "Error: Requested sample size " << _uiter_size << " is negative." << endl;
            exit(1);
            {% endif %}
        } else if (_uiter_size == 0)
            continue;
        long {{inner_variable}};

        if (_selection_algo)
        {
            {{inner_variable}} = _uiter_low - _uiter_step;
        } else
        {
            // For the tracking algorithm, we have to first create all values
            // to make sure they will be iterated in sorted order
            _selected_set.clear();
            while (_n_selected < _uiter_size)
            {
                int _r = (int)(_rand(_vectorisation_idx) * _n_total);
                while (! _selected_set.insert(_r).second)
                    _r = (int)(_rand(_vectorisation_idx) * _n_total);
                _n_selected++;
            }
            _n_selected = 0;
            _selected_it = _selected_set.begin();
        }
        while (_n_selected < _uiter_size)
        {
            if (_selection_algo)
            {
                // Selection sampling technique
                // See section 3.4.2 of Donald E. Knuth, AOCP, Vol 2, Seminumerical Algorithms
                {{inner_variable}} += _uiter_step;
                _n_dealt_with++;
                const double _U = _rand(_vectorisation_idx);
                if ((_n_total - _n_dealt_with) * _U >= _uiter_size - _n_selected)
                    continue;
            } else
            {
                {{inner_variable}} = _uiter_low + (*_selected_it)*_uiter_step;
                _selected_it++;
            }
            _n_selected++;
        {% else %}
        if(_uiter_p==0) continue;
        const bool _jump_algo = _uiter_p<0.25;
        double _log1p;
        if(_jump_algo)
            _log1p = log(1-_uiter_p);
        else
            _log1p = 1.0; // will be ignored
        const double _pconst = 1.0/log(1-_uiter_p);
        for(long {{inner_variable}}=_uiter_low; _iter_sign*{{inner_variable}}<_iter_sign*_uiter_high; {{inner_variable}} += _uiter_step)
        {
            if(_jump_algo) {
                const double _r = _rand(_vectorisation_idx);
                if(_r==0.0) break;
                const int _jump = floor(log(_r)*_pconst)*_uiter_step;
                {{inner_variable}} += _jump;
                if (_iter_sign*{{inner_variable}} >= _iter_sign * _uiter_high) continue;
            } else {
                if (_rand(_vectorisation_idx)>=_uiter_p) continue;
            }
        {% endif %}
        {% endif %}
            long __{{result_index}}, _{{result_index}}, {{outer_index_array}}, _{{outer_index_array}};
            {
                {{vector_code['generator_expr']|autoindent}}
                __{{result_index}} = _{{result_index}}; // pick up the locally scoped var and store in outer var
                _{{outer_index_array}} = {{outer_index_array}};
            }
            _{{result_index}} = __{{result_index}}; // make the previously locally scoped var available
            {{outer_index_array}} = _{{outer_index_array}};
            _raw{{result_index_array}} = _{{result_index}} + {{result_index_offset}};
            {% if result_index_condition %}
            {
                {% if result_index_used %}
                {# The condition could index outside of array range #}
                if(_{{result_index}}<0 || _{{result_index}}>=_{{result_index_size}})
                {
                    {% if skip_if_invalid %}
                    continue;
                    {% else %}
                    cout << "Error: tried to create synapse to neuron {{result_index}}=" << _{{result_index}} << " outside range 0 to " <<
                                            _{{result_index_size}}-1 << endl;
                    exit(1);
                    {% endif %}
                }
                {% endif %}
                {{vector_code['create_cond']|autoindent}}
                __cond = _cond;
            }
            _cond = __cond;
            {% endif %}

            {% if if_expression!='True' %}
            if(!_cond) continue;
            {% endif %}
            {% if not result_index_used %}
            {# Otherwise, we already checked before #}
            if(_{{result_index}}<0 || _{{result_index}}>=_{{result_index_size}})
            {
                {% if skip_if_invalid %}
                continue;
                {% else %}
                cout << "Error: tried to create synapse to neuron {{result_index}}=" << _{{result_index}} <<
                        " outside range 0 to " << _{{result_index_size}}-1 << endl;
                exit(1);
                {% endif %}
            }
            {% endif %}
            {{vector_code['update']|autoindent}}

            for (size_t _repetition=0; _repetition<_n; _repetition++) {
                {{_dynamic_N_outgoing}}[_pre_idx] += 1;
                {{_dynamic_N_incoming}}[_post_idx] += 1;
                {{_dynamic__synaptic_pre}}.push_back(_pre_idx);
                {{_dynamic__synaptic_post}}.push_back(_post_idx);
			}
		}
	}

	// now we need to resize all registered variables
	const int32_t newsize = {{_dynamic__synaptic_pre}}.size();
    {% for varname in owner._registered_variables | variables_to_array_names(access_data=False) | sort%}
    {{varname}}.resize(newsize);
    {% endfor %}
	// Also update the total number of synapses
	{{N}} = newsize;

    {% if multisynaptic_index %}
    // Update the "synapse number" (number of synapses for the same
    // source-target pair)
    std::map<std::pair<int32_t, int32_t>, int32_t> source_target_count;
    for (size_t _i=0; _i<newsize; _i++)
    {
        // Note that source_target_count will create a new entry initialized
        // with 0 when the key does not exist yet
        const std::pair<int32_t, int32_t> source_target = std::pair<int32_t, int32_t>({{_dynamic__synaptic_pre}}[_i], {{_dynamic__synaptic_post}}[_i]);
        {{get_array_name(variables[multisynaptic_index], access_data=False)}}[_i] = source_target_count[source_target];
        source_target_count[source_target]++;
    }
    {% endif %}
{% endblock %}