1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
{# USES_VARIABLES { _synaptic_pre, _synaptic_post, rand,
N_incoming, N_outgoing, N,
N_pre, N_post, _source_offset, _target_offset } #}
{# WRITES_TO_READ_ONLY_VARIABLES { _synaptic_pre, _synaptic_post,
N_incoming, N_outgoing, N}
#}
{% extends 'common_synapses.cpp' %}
{% block extra_headers %}
{{ super() }}
#include <iostream>
#include <set>
{% endblock %}
{% block maincode %}
{# Get N_post and N_pre in the correct way, regardless of whether they are
constants or scalar arrays#}
const size_t _N_pre = {{constant_or_scalar('N_pre', variables['N_pre'])}};
const size_t _N_post = {{constant_or_scalar('N_post', variables['N_post'])}};
{{_dynamic_N_incoming}}.resize(_N_post + _target_offset);
{{_dynamic_N_outgoing}}.resize(_N_pre + _source_offset);
size_t _raw_pre_idx, _raw_post_idx;
{# For a connect call j='k+i for k in range(0, N_post, 2) if k+i < N_post'
"j" is called the "result index" (and "_post_idx" the "result index array", etc.)
"i" is called the "outer index" (and "_pre_idx" the "outer index array", etc.)
"k" is called the inner variable #}
// scalar code
const size_t _vectorisation_idx = -1;
{{scalar_code['setup_iterator']|autoindent}}
{{scalar_code['generator_expr']|autoindent}}
{{scalar_code['create_cond']|autoindent}}
{{scalar_code['update']|autoindent}}
for(size_t _{{outer_index}}=0; _{{outer_index}}<_{{outer_index_size}}; _{{outer_index}}++)
{
bool __cond, _cond;
_raw{{outer_index_array}} = _{{outer_index}} + {{outer_index_offset}};
{% if not result_index_condition %}
{
{{vector_code['create_cond']|autoindent}}
__cond = _cond;
}
_cond = __cond;
if(!_cond) continue;
{% endif %}
// Some explanation of this hackery. The problem is that we have multiple code blocks.
// Each code block is generated independently of the others, and they declare variables
// at the beginning if necessary (including declaring them as const if their values don't
// change). However, if two code blocks follow each other in the same C++ scope then
// that causes a redeclaration error. So we solve it by putting each block inside a
// pair of braces to create a new scope specific to each code block. However, that brings
// up another problem: we need the values from these code blocks. I don't have a general
// solution to this problem, but in the case of this particular template, we know which
// values we need from them so we simply create outer scoped variables to copy the value
// into. Later on we have a slightly more complicated problem because the original name
// _j has to be used, so we create two variables __j, _j at the outer scope, copy
// _j to __j in the inner scope (using the inner scope version of _j), and then
// __j to _j in the outer scope (to the outer scope version of _j). This outer scope
// version of _j will then be used in subsequent blocks.
long _uiter_low;
long _uiter_high;
long _uiter_step;
{% if iterator_func=='sample' %}
long _uiter_size;
double _uiter_p;
{% endif %}
{
{{vector_code['setup_iterator']|autoindent}}
_uiter_low = _iter_low;
_uiter_high = _iter_high;
_uiter_step = _iter_step;
{% if iterator_func=='sample' %}
{% if iterator_kwds['sample_size'] == 'fixed' %}
_uiter_size = _iter_size;
{% else %}
_uiter_p = _iter_p;
{% endif %}
{% endif %}
}
{% if iterator_func=='range' %}
for(long {{inner_variable}}=_uiter_low; {{inner_variable}}<_uiter_high; {{inner_variable}}+=_uiter_step)
{
{% elif iterator_func=='sample' %}
const int _iter_sign = _uiter_step > 0 ? 1 : -1;
{% if iterator_kwds['sample_size'] == 'fixed' %}
std::set<int> _selected_set = std::set<int>();
std::set<int>::iterator _selected_it;
int _n_selected = 0;
int _n_dealt_with = 0;
int _n_total;
if (_uiter_step > 0)
_n_total = (_uiter_high - _uiter_low - 1) / _uiter_step + 1;
else
_n_total = (_uiter_low - _uiter_high - 1) / -_uiter_step + 1;
// Value determined by benchmarking, see github PR #1280
const bool _selection_algo = 1.0*_uiter_size / _n_total > 0.06;
if (_uiter_size > _n_total)
{
{% if skip_if_invalid %}
_uiter_size = _n_total;
{% else %}
cout << "Error: Requested sample size " << _uiter_size << " is bigger than the " <<
"population size " << _n_total << "." << endl;
exit(1);
{% endif %}
} else if (_uiter_size < 0)
{
{% if skip_if_invalid %}
continue;
{% else %}
cout << "Error: Requested sample size " << _uiter_size << " is negative." << endl;
exit(1);
{% endif %}
} else if (_uiter_size == 0)
continue;
long {{inner_variable}};
if (_selection_algo)
{
{{inner_variable}} = _uiter_low - _uiter_step;
} else
{
// For the tracking algorithm, we have to first create all values
// to make sure they will be iterated in sorted order
_selected_set.clear();
while (_n_selected < _uiter_size)
{
int _r = (int)(_rand(_vectorisation_idx) * _n_total);
while (! _selected_set.insert(_r).second)
_r = (int)(_rand(_vectorisation_idx) * _n_total);
_n_selected++;
}
_n_selected = 0;
_selected_it = _selected_set.begin();
}
while (_n_selected < _uiter_size)
{
if (_selection_algo)
{
// Selection sampling technique
// See section 3.4.2 of Donald E. Knuth, AOCP, Vol 2, Seminumerical Algorithms
{{inner_variable}} += _uiter_step;
_n_dealt_with++;
const double _U = _rand(_vectorisation_idx);
if ((_n_total - _n_dealt_with) * _U >= _uiter_size - _n_selected)
continue;
} else
{
{{inner_variable}} = _uiter_low + (*_selected_it)*_uiter_step;
_selected_it++;
}
_n_selected++;
{% else %}
if(_uiter_p==0) continue;
const bool _jump_algo = _uiter_p<0.25;
double _log1p;
if(_jump_algo)
_log1p = log(1-_uiter_p);
else
_log1p = 1.0; // will be ignored
const double _pconst = 1.0/log(1-_uiter_p);
for(long {{inner_variable}}=_uiter_low; _iter_sign*{{inner_variable}}<_iter_sign*_uiter_high; {{inner_variable}} += _uiter_step)
{
if(_jump_algo) {
const double _r = _rand(_vectorisation_idx);
if(_r==0.0) break;
const int _jump = floor(log(_r)*_pconst)*_uiter_step;
{{inner_variable}} += _jump;
if (_iter_sign*{{inner_variable}} >= _iter_sign * _uiter_high) continue;
} else {
if (_rand(_vectorisation_idx)>=_uiter_p) continue;
}
{% endif %}
{% endif %}
long __{{result_index}}, _{{result_index}}, {{outer_index_array}}, _{{outer_index_array}};
{
{{vector_code['generator_expr']|autoindent}}
__{{result_index}} = _{{result_index}}; // pick up the locally scoped var and store in outer var
_{{outer_index_array}} = {{outer_index_array}};
}
_{{result_index}} = __{{result_index}}; // make the previously locally scoped var available
{{outer_index_array}} = _{{outer_index_array}};
_raw{{result_index_array}} = _{{result_index}} + {{result_index_offset}};
{% if result_index_condition %}
{
{% if result_index_used %}
{# The condition could index outside of array range #}
if(_{{result_index}}<0 || _{{result_index}}>=_{{result_index_size}})
{
{% if skip_if_invalid %}
continue;
{% else %}
cout << "Error: tried to create synapse to neuron {{result_index}}=" << _{{result_index}} << " outside range 0 to " <<
_{{result_index_size}}-1 << endl;
exit(1);
{% endif %}
}
{% endif %}
{{vector_code['create_cond']|autoindent}}
__cond = _cond;
}
_cond = __cond;
{% endif %}
{% if if_expression!='True' %}
if(!_cond) continue;
{% endif %}
{% if not result_index_used %}
{# Otherwise, we already checked before #}
if(_{{result_index}}<0 || _{{result_index}}>=_{{result_index_size}})
{
{% if skip_if_invalid %}
continue;
{% else %}
cout << "Error: tried to create synapse to neuron {{result_index}}=" << _{{result_index}} <<
" outside range 0 to " << _{{result_index_size}}-1 << endl;
exit(1);
{% endif %}
}
{% endif %}
{{vector_code['update']|autoindent}}
for (size_t _repetition=0; _repetition<_n; _repetition++) {
{{_dynamic_N_outgoing}}[_pre_idx] += 1;
{{_dynamic_N_incoming}}[_post_idx] += 1;
{{_dynamic__synaptic_pre}}.push_back(_pre_idx);
{{_dynamic__synaptic_post}}.push_back(_post_idx);
}
}
}
// now we need to resize all registered variables
const int32_t newsize = {{_dynamic__synaptic_pre}}.size();
{% for varname in owner._registered_variables | variables_to_array_names(access_data=False) | sort%}
{{varname}}.resize(newsize);
{% endfor %}
// Also update the total number of synapses
{{N}} = newsize;
{% if multisynaptic_index %}
// Update the "synapse number" (number of synapses for the same
// source-target pair)
std::map<std::pair<int32_t, int32_t>, int32_t> source_target_count;
for (size_t _i=0; _i<newsize; _i++)
{
// Note that source_target_count will create a new entry initialized
// with 0 when the key does not exist yet
const std::pair<int32_t, int32_t> source_target = std::pair<int32_t, int32_t>({{_dynamic__synaptic_pre}}[_i], {{_dynamic__synaptic_post}}[_i]);
{{get_array_name(variables[multisynaptic_index], access_data=False)}}[_i] = source_target_count[source_target];
source_target_count[source_target]++;
}
{% endif %}
{% endblock %}
|