1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
|
"""
Differential equations for Brian models.
"""
import keyword
import re
import string
from collections import namedtuple
from collections.abc import Hashable, Mapping
import sympy
from pyparsing import (
CharsNotIn,
Combine,
Group,
LineEnd,
OneOrMore,
Optional,
ParseException,
Suppress,
Word,
ZeroOrMore,
restOfLine,
)
from brian2.core.namespace import DEFAULT_CONSTANTS, DEFAULT_FUNCTIONS, DEFAULT_UNITS
from brian2.parsing.sympytools import str_to_sympy, sympy_to_str
from brian2.units.allunits import second
from brian2.units.fundamentalunits import (
DIMENSIONLESS,
DimensionMismatchError,
Quantity,
Unit,
get_dimensions,
get_unit,
get_unit_for_display,
)
from brian2.utils.caching import CacheKey, cached
from brian2.utils.logger import get_logger
from brian2.utils.stringtools import get_identifiers
from brian2.utils.topsort import topsort
from .codestrings import Expression
from .unitcheck import check_dimensions
__all__ = ["Equations"]
logger = get_logger(__name__)
# Equation types (currently simple strings but always use the constants,
# this might get refactored into objects, for example)
PARAMETER = "parameter"
DIFFERENTIAL_EQUATION = "differential equation"
SUBEXPRESSION = "subexpression"
# variable types (FLOAT is the only one that is possible for variables that
# have dimensions). These types will be later translated into dtypes, either
# using the default values from the preferences, or explicitly given dtypes in
# the construction of the `NeuronGroup`, `Synapses`, etc. object
FLOAT = "float"
INTEGER = "integer"
BOOLEAN = "boolean"
# Definitions of equation structure for parsing with pyparsing
# TODO: Maybe move them somewhere else to not pollute the namespace here?
# Only IDENTIFIER and EQUATIONS are ever used later
###############################################################################
# Basic Elements
###############################################################################
# identifiers like in C: can start with letter or underscore, then a
# combination of letters, numbers and underscores
# Note that the check_identifiers function later performs more checks, e.g.
# names starting with underscore should only be used internally
IDENTIFIER = Word(
string.ascii_letters + "_", string.ascii_letters + string.digits + "_"
).setResultsName("identifier")
# very broad definition here, expression will be analysed by sympy anyway
# allows for multi-line expressions, where each line can have comments
EXPRESSION = Combine(
OneOrMore(
(CharsNotIn(":#\n") + Suppress(Optional(LineEnd()))).ignore("#" + restOfLine)
),
joinString=" ",
).setResultsName("expression")
# a unit
# very broad definition here, again. Whether this corresponds to a valid unit
# string will be checked later
UNIT = Word(string.ascii_letters + string.digits + "*/.- ").setResultsName("unit")
# a single Flag (e.g. "const" or "event-driven")
FLAG = Word(string.ascii_letters, string.ascii_letters + "_- " + string.digits)
# Flags are comma-separated and enclosed in parantheses: "(flag1, flag2)"
FLAGS = (
Suppress("(") + FLAG + ZeroOrMore(Suppress(",") + FLAG) + Suppress(")")
).setResultsName("flags")
###############################################################################
# Equations
###############################################################################
# Three types of equations
# Parameter:
# x : volt (flags)
PARAMETER_EQ = Group(
IDENTIFIER + Suppress(":") + UNIT + Optional(FLAGS)
).setResultsName(PARAMETER)
# Static equation:
# x = 2 * y : volt (flags)
STATIC_EQ = Group(
IDENTIFIER + Suppress("=") + EXPRESSION + Suppress(":") + UNIT + Optional(FLAGS)
).setResultsName(SUBEXPRESSION)
# Differential equation
# dx/dt = -x / tau : volt
DIFF_OP = Suppress("d") + IDENTIFIER + Suppress("/") + Suppress("dt")
DIFF_EQ = Group(
DIFF_OP + Suppress("=") + EXPRESSION + Suppress(":") + UNIT + Optional(FLAGS)
).setResultsName(DIFFERENTIAL_EQUATION)
# ignore comments
EQUATION = (PARAMETER_EQ | STATIC_EQ | DIFF_EQ).ignore("#" + restOfLine)
EQUATIONS = ZeroOrMore(EQUATION)
class EquationError(Exception):
"""
Exception type related to errors in an equation definition.
"""
pass
def check_identifier_basic(identifier):
"""
Check an identifier (usually resulting from an equation string provided by
the user) for conformity with the rules. The rules are:
1. Only ASCII characters
2. Starts with a character, then mix of alphanumerical characters and
underscore
3. Is not a reserved keyword of Python
Parameters
----------
identifier : str
The identifier that should be checked
Raises
------
SyntaxError
If the identifier does not conform to the above rules.
"""
# Check whether the identifier is parsed correctly -- this is always the
# case, if the identifier results from the parsing of an equation but there
# might be situations where the identifier is specified directly
parse_result = list(IDENTIFIER.scanString(identifier))
# parse_result[0][0][0] refers to the matched string -- this should be the
# full identifier, if not it is an illegal identifier like "3foo" which only
# matched on "foo"
if len(parse_result) != 1 or parse_result[0][0][0] != identifier:
raise SyntaxError(f"'{identifier}' is not a valid variable name.")
if keyword.iskeyword(identifier):
raise SyntaxError(
f"'{identifier}' is a Python keyword and cannot be used as a variable."
)
if identifier.startswith("_"):
raise SyntaxError(
f"Variable '{identifier}' starts with an underscore, "
"this is only allowed for variables used "
"internally"
)
def check_identifier_reserved(identifier):
"""
Check that an identifier is not using a reserved special variable name. The
special variables are: 't', 'dt', and 'xi', as well as everything starting
with `xi_`.
Parameters
----------
identifier: str
The identifier that should be checked
Raises
------
SyntaxError
If the identifier is a special variable name.
"""
if identifier in (
"t",
"dt",
"t_in_timesteps",
"xi",
"i",
"N",
) or identifier.startswith("xi_"):
raise SyntaxError(
f"'{identifier}' has a special meaning in equations and "
"cannot be used as a variable name."
)
def check_identifier_units(identifier):
"""
Make sure that identifier names do not clash with unit names.
"""
if identifier in DEFAULT_UNITS:
raise SyntaxError(
f"'{identifier}' is the name of a unit, cannot be used as a variable name."
)
def check_identifier_functions(identifier):
"""
Make sure that identifier names do not clash with function names.
"""
if identifier in DEFAULT_FUNCTIONS:
raise SyntaxError(
f"'{identifier}' is the name of a function, cannot be used as "
"a variable name."
)
def check_identifier_constants(identifier):
"""
Make sure that identifier names do not clash with function names.
"""
if identifier in DEFAULT_CONSTANTS:
raise SyntaxError(
f"'{identifier}' is the name of a constant, cannot be used as "
"a variable name."
)
_base_units_with_alternatives = None
_base_units = None
def dimensions_and_type_from_string(unit_string):
"""
Returns the physical dimensions that results from evaluating a string like
"siemens / metre ** 2", allowing for the special string "1" to signify
dimensionless units, the string "boolean" for a boolean and "integer" for
an integer variable.
Parameters
----------
unit_string : str
The string that should evaluate to a unit
Returns
-------
d, type : (`Dimension`, {FLOAT, INTEGER or BOOL})
The resulting physical dimensions and the type of the variable.
Raises
------
ValueError
If the string cannot be evaluated to a unit.
"""
# Lazy import to avoid circular dependency
from brian2.core.namespace import DEFAULT_UNITS
global _base_units_with_alternatives
global _base_units
if _base_units_with_alternatives is None:
base_units_for_dims = {}
for unit_name, unit in reversed(DEFAULT_UNITS.items()):
if float(unit) == 1.0 and repr(unit)[-1] not in ["2", "3"]:
if unit.dim in base_units_for_dims:
if unit_name not in base_units_for_dims[unit.dim]:
base_units_for_dims[unit.dim].append(unit_name)
else:
base_units_for_dims[unit.dim] = [repr(unit)]
if unit_name != repr(unit):
base_units_for_dims[unit.dim].append(unit_name)
alternatives = sorted(
[tuple(values) for values in base_units_for_dims.values()]
)
_base_units = {v: DEFAULT_UNITS[v] for values in alternatives for v in values}
# Create a string that lists all allowed base units
alternative_strings = []
for units in alternatives:
string = units[0]
if len(units) > 1:
other_units = ", ".join(units[1:])
string += f" ({other_units})"
alternative_strings.append(string)
_base_units_with_alternatives = ", ".join(alternative_strings)
unit_string = unit_string.strip()
# Special case: dimensionless unit
if unit_string == "1":
return DIMENSIONLESS, FLOAT
# Another special case: boolean variable
if unit_string == "boolean":
return DIMENSIONLESS, BOOLEAN
if unit_string == "bool":
raise TypeError("Use 'boolean' not 'bool' as the unit for a boolean variable.")
# Yet another special case: integer variable
if unit_string == "integer":
return DIMENSIONLESS, INTEGER
# Check first whether the expression only refers to base units
identifiers = get_identifiers(unit_string)
for identifier in identifiers:
if identifier not in _base_units:
if identifier in DEFAULT_UNITS:
# A known unit, but not a base unit
base_unit = get_unit(DEFAULT_UNITS[identifier].dim)
if not repr(base_unit) in _base_units:
# Make sure that we don't suggest a unit that is not allowed
# (should not happen, normally)
base_unit = Unit(1, dim=base_unit.dim)
raise ValueError(
"Unit specification refers to "
f"'{identifier}', but this is not a base "
f"unit. Use '{base_unit!r}' instead."
)
else:
# Not a known unit
raise ValueError(
"Unit specification refers to "
f"'{identifier}', but this is not a base "
"unit. The following base units are "
f"allowed: {_base_units_with_alternatives}."
)
try:
evaluated_unit = eval(unit_string, _base_units)
except Exception as ex:
raise ValueError(
f"Could not interpret '{unit_string}' as a unit specification: {ex}"
)
# Check whether the result is a unit
if not isinstance(evaluated_unit, Unit):
if isinstance(evaluated_unit, Quantity):
raise ValueError(
f"'{unit_string}' does not evaluate to a unit but to a "
"quantity -- make sure to only use units, e.g. "
"'siemens/metre**2' and not '1 * siemens/metre**2'"
)
else:
raise ValueError(
f"'{unit_string}' does not evaluate to a unit, the result "
f"has type {type(evaluated_unit)} instead."
)
# No error has been raised, all good
return evaluated_unit.dim, FLOAT
@cached
def parse_string_equations(eqns):
"""
parse_string_equations(eqns)
Parse a string defining equations.
Parameters
----------
eqns : str
The (possibly multi-line) string defining the equations. See the
documentation of the `Equations` class for details.
Returns
-------
equations : dict
A dictionary mapping variable names to
`~brian2.equations.equations.Equations` objects
"""
equations = {}
try:
parsed = EQUATIONS.parseString(eqns, parseAll=True)
except ParseException as p_exc:
raise EquationError(
"Parsing failed: \n"
+ str(p_exc.line)
+ "\n"
+ " " * (p_exc.column - 1)
+ "^\n"
+ str(p_exc)
) from p_exc
for eq in parsed:
eq_type = eq.getName()
eq_content = dict(eq.items())
# Check for reserved keywords
identifier = eq_content["identifier"]
# Convert unit string to Unit object
try:
dims, var_type = dimensions_and_type_from_string(eq_content["unit"])
except ValueError as ex:
raise EquationError(
"Error parsing the unit specification for "
f"variable '{identifier}': {ex}"
)
expression = eq_content.get("expression", None)
if expression is not None:
# Replace multiple whitespaces (arising from joining multiline
# strings) with single space
p = re.compile(r"\s{2,}")
expression = Expression(p.sub(" ", expression))
flags = list(eq_content.get("flags", []))
equation = SingleEquation(
eq_type, identifier, dims, var_type=var_type, expr=expression, flags=flags
)
if identifier in equations:
raise EquationError(f"Duplicate definition of variable '{identifier}'")
equations[identifier] = equation
return equations
class SingleEquation(Hashable, CacheKey):
"""
Class for internal use, encapsulates a single equation or parameter.
.. note::
This class should never be used directly, it is only useful as part of
the `Equations` class.
Parameters
----------
type : {PARAMETER, DIFFERENTIAL_EQUATION, SUBEXPRESSION}
The type of the equation.
varname : str
The variable that is defined by this equation.
dimensions : `Dimension`
The physical dimensions of the variable
var_type : {FLOAT, INTEGER, BOOLEAN}
The type of the variable (floating point value or boolean).
expr : `Expression`, optional
The expression defining the variable (or ``None`` for parameters).
flags: list of str, optional
A list of flags that give additional information about this equation.
What flags are possible depends on the type of the equation and the
context.
"""
_cache_irrelevant_attributes = {"update_order"}
def __init__(
self, type, varname, dimensions, var_type=FLOAT, expr=None, flags=None
):
self.type = type
self.varname = varname
self.dim = get_dimensions(dimensions)
self.var_type = var_type
if dimensions is not DIMENSIONLESS:
if var_type == BOOLEAN:
raise TypeError("Boolean variables are necessarily dimensionless.")
elif var_type == INTEGER:
raise TypeError("Integer variables are necessarily dimensionless.")
if type == DIFFERENTIAL_EQUATION:
if var_type != FLOAT:
raise TypeError(
"Differential equations can only define floating point variables"
)
self.expr = expr
if flags is None:
self.flags = []
else:
self.flags = list(flags)
# will be set later in the sort_subexpressions method of Equations
self.update_order = -1
unit = property(lambda self: get_unit(self.dim), doc="The `Unit` of this equation.")
identifiers = property(
lambda self: self.expr.identifiers if self.expr is not None else set(),
doc="All identifiers in the RHS of this equation.",
)
stochastic_variables = property(
lambda self: {
variable
for variable in self.identifiers
if variable == "xi" or variable.startswith("xi_")
},
doc="Stochastic variables in the RHS of this equation",
)
def __eq__(self, other):
if not isinstance(other, SingleEquation):
return NotImplemented
return self._state_tuple == other._state_tuple
def __ne__(self, other):
return not self == other
def __hash__(self):
return hash(self._state_tuple)
def _latex(self, *args):
if self.type == DIFFERENTIAL_EQUATION:
return (
r"\frac{\mathrm{d}"
+ sympy.latex(sympy.Symbol(self.varname))
+ r"}{\mathrm{d}t} = "
+ sympy.latex(str_to_sympy(self.expr.code))
)
elif self.type == SUBEXPRESSION:
return (
sympy.latex(sympy.Symbol(self.varname))
+ " = "
+ sympy.latex(str_to_sympy(self.expr.code))
)
elif self.type == PARAMETER:
return sympy.latex(sympy.Symbol(self.varname))
def __str__(self):
if self.type == DIFFERENTIAL_EQUATION:
s = "d" + self.varname + "/dt"
else:
s = self.varname
if self.expr is not None:
s += " = " + str(self.expr)
s += " : " + get_unit_for_display(self.dim)
if len(self.flags):
s += " (" + ", ".join(self.flags) + ")"
return s
def __repr__(self):
s = "<" + self.type + " " + self.varname
if self.expr is not None:
s += ": " + self.expr.code
s += " (Unit: " + get_unit_for_display(self.dim)
if len(self.flags):
s += ", flags: " + ", ".join(self.flags)
s += ")>"
return s
def _repr_pretty_(self, p, cycle):
"""
Pretty printing for ipython.
"""
if cycle:
# should never happen
raise AssertionError("Cyclical call of SingleEquation._repr_pretty")
if self.type == DIFFERENTIAL_EQUATION:
p.text("d" + self.varname + "/dt")
else:
p.text(self.varname)
if self.expr is not None:
p.text(" = ")
p.pretty(self.expr)
p.text(" : ")
p.pretty(get_unit(self.dim))
if len(self.flags):
p.text(" (" + ", ".join(self.flags) + ")")
def _repr_latex_(self):
return "$" + sympy.latex(self) + "$"
class Equations(Hashable, Mapping):
"""
Container that stores equations from which models can be created.
String equations can be of any of the following forms:
1. ``dx/dt = f : unit (flags)`` (differential equation)
2. ``x = f : unit (flags)`` (equation)
3. ``x : unit (flags)`` (parameter)
String equations can span several lines and contain Python-style comments
starting with ``#``
Parameters
----------
eqs : `str` or list of `SingleEquation` objects
A multiline string of equations (see above) -- for internal purposes
also a list of `SingleEquation` objects can be given. This is done for
example when adding new equations to implement the refractory
mechanism. Note that in this case the variable names are not checked
to allow for "internal names", starting with an underscore.
kwds: keyword arguments
Keyword arguments can be used to replace variables in the equation
string. Arguments have to be of the form ``varname=replacement``, where
`varname` has to correspond to a variable name in the given equation.
The replacement can be either a string (replacing a name with a new
name, e.g. ``tau='tau_e'``) or a value (replacing the variable name
with the value, e.g. ``tau=tau_e`` or ``tau=10*ms``).
"""
def __init__(self, eqns, **kwds):
if isinstance(eqns, str):
self._equations = parse_string_equations(eqns)
# Do a basic check for the identifiers
self.check_identifiers()
else:
self._equations = {}
for eq in eqns:
if not isinstance(eq, SingleEquation):
raise TypeError(
"The list should only contain "
f"SingleEquation objects, not {type(eq)}"
)
if eq.varname in self._equations:
raise EquationError(
f"Duplicate definition of variable '{eq.varname}'"
)
self._equations[eq.varname] = eq
self._equations = self._substitute(kwds)
# Check for special symbol xi (stochastic term)
uses_xi = None
for eq in self._equations.values():
if eq.expr is not None and "xi" in eq.expr.identifiers:
if not eq.type == DIFFERENTIAL_EQUATION:
raise EquationError(
f"The equation defining '{eq.varname}' "
"contains the symbol 'xi' but is not a "
"differential equation."
)
elif uses_xi is not None:
raise EquationError(
f"The equation defining {eq.varname} contains "
"the symbol 'xi', but it is already used "
f"in the equation defining {uses_xi}. Rename "
"the variables to 'xi_...' to make "
"clear whether they are the same or "
"independent random variables. Using "
"the same name twice will lead to "
"identical noise realizations "
"whereas using different names will "
"lead to independent noise "
"realizations."
)
else:
uses_xi = eq.varname
# rearrange subexpressions
self._sort_subexpressions()
#: Cache for equations with the subexpressions substituted
self._substituted_expressions = None
def _substitute(self, replacements):
if len(replacements) == 0:
return self._equations
new_equations = {}
for eq in self.values():
# Replace the name of a model variable (works only for strings)
if eq.varname in replacements:
new_varname = replacements[eq.varname]
if not isinstance(new_varname, str):
raise ValueError(
f"Cannot replace model variable '{eq.varname}' with a value."
)
if new_varname in self or new_varname in new_equations:
raise EquationError(
f"Cannot replace model variable '{eq.varname}' "
f"with '{new_varname}', duplicate definition "
f"of '{new_varname}'."
)
# make sure that the replacement is a valid identifier
Equations.check_identifier(new_varname)
else:
new_varname = eq.varname
if eq.type in [SUBEXPRESSION, DIFFERENTIAL_EQUATION]:
# Replace values in the RHS of the equation
new_code = eq.expr.code
for to_replace, replacement in replacements.items():
if to_replace in eq.identifiers:
if isinstance(replacement, str):
# replace the name with another name
new_code = re.sub(
"\\b" + to_replace + "\\b", replacement, new_code
)
else:
# replace the name with a value
new_code = re.sub(
"\\b" + to_replace + "\\b",
"(" + repr(replacement) + ")",
new_code,
)
try:
Expression(new_code)
except ValueError as ex:
raise ValueError(
'Replacing "%s" with "%r" failed: %s'
% (to_replace, replacement, ex)
)
new_equations[new_varname] = SingleEquation(
eq.type,
new_varname,
dimensions=eq.dim,
var_type=eq.var_type,
expr=Expression(new_code),
flags=eq.flags,
)
else:
new_equations[new_varname] = SingleEquation(
eq.type,
new_varname,
dimensions=eq.dim,
var_type=eq.var_type,
flags=eq.flags,
)
return new_equations
def substitute(self, **kwds):
return Equations(list(self._substitute(kwds).values()))
def __iter__(self):
return iter(self._equations)
def __len__(self):
return len(self._equations)
def __getitem__(self, key):
return self._equations[key]
def __add__(self, other_eqns):
if isinstance(other_eqns, str):
other_eqns = parse_string_equations(other_eqns)
elif not isinstance(other_eqns, Equations):
return NotImplemented
return Equations(list(self.values()) + list(other_eqns.values()))
def __hash__(self):
return hash(frozenset(self._equations.items()))
#: A set of functions that are used to check identifiers (class attribute).
#: Functions can be registered with the static method
#: `Equations.register_identifier_check` and will be automatically
#: used when checking identifiers
identifier_checks = {
check_identifier_basic,
check_identifier_reserved,
check_identifier_functions,
check_identifier_constants,
check_identifier_units,
}
@staticmethod
def register_identifier_check(func):
"""
Register a function for checking identifiers.
Parameters
----------
func : callable
The function has to receive a single argument, the name of the
identifier to check, and raise a ValueError if the identifier
violates any rule.
"""
if not callable(func):
raise ValueError("Can only register callables.")
Equations.identifier_checks.add(func)
@staticmethod
def check_identifier(identifier):
"""
Perform all the registered checks. Checks can be registered via
`Equations.register_identifier_check`.
Parameters
----------
identifier : str
The identifier that should be checked
Raises
------
ValueError
If any of the registered checks fails.
"""
for check_func in Equations.identifier_checks:
check_func(identifier)
def check_identifiers(self):
"""
Check all identifiers for conformity with the rules.
Raises
------
ValueError
If an identifier does not conform to the rules.
See also
--------
Equations.check_identifier : The function that is called for each identifier.
"""
for name in self.names:
Equations.check_identifier(name)
def get_substituted_expressions(self, variables=None, include_subexpressions=False):
"""
Return a list of ``(varname, expr)`` tuples, containing all
differential equations (and optionally subexpressions) with all the
subexpression variables substituted with the respective expressions.
Parameters
----------
variables : dict, optional
A mapping of variable names to `Variable`/`Function` objects.
include_subexpressions : bool
Whether also to return substituted subexpressions. Defaults to
``False``.
Returns
-------
expr_tuples : list of (str, `CodeString`)
A list of ``(varname, expr)`` tuples, where ``expr`` is a
`CodeString` object with all subexpression variables substituted
with the respective expression.
"""
if self._substituted_expressions is None:
self._substituted_expressions = []
substitutions = {}
for eq in self.ordered:
# Skip parameters
if eq.expr is None:
continue
new_sympy_expr = str_to_sympy(eq.expr.code, variables).xreplace(
substitutions
)
new_str_expr = sympy_to_str(new_sympy_expr)
expr = Expression(new_str_expr)
if eq.type == SUBEXPRESSION:
if eq.var_type == INTEGER:
sympy_var = sympy.Symbol(eq.varname, integer=True)
else:
sympy_var = sympy.Symbol(eq.varname, real=True)
substitutions.update(
{sympy_var: str_to_sympy(expr.code, variables)}
)
self._substituted_expressions.append((eq.varname, expr))
elif eq.type == DIFFERENTIAL_EQUATION:
# a differential equation that we have to check
self._substituted_expressions.append((eq.varname, expr))
else:
raise AssertionError(f"Unknown equation type {eq.type}")
if include_subexpressions:
return self._substituted_expressions
else:
return [
(name, expr)
for name, expr in self._substituted_expressions
if self[name].type == DIFFERENTIAL_EQUATION
]
def _get_stochastic_type(self):
"""
Returns the type of stochastic differential equations (additivive or
multiplicative). The system is only classified as ``additive`` if *all*
equations have only additive noise (or no noise).
Returns
-------
type : str
Either ``None`` (no noise variables), ``'additive'`` (factors for
all noise variables are independent of other state variables or
time), ``'multiplicative'`` (at least one of the noise factors
depends on other state variables and/or time).
"""
if not self.is_stochastic:
return None
for _, expr in self.get_substituted_expressions():
_, stochastic = expr.split_stochastic()
if stochastic is not None:
for factor in stochastic.values():
if "t" in factor.identifiers:
# noise factor depends on time
return "multiplicative"
for identifier in factor.identifiers:
if identifier in self.diff_eq_names:
# factor depends on another state variable
return "multiplicative"
return "additive"
############################################################################
# Properties
############################################################################
# Lists of equations or (variable, expression tuples)
ordered = property(
lambda self: sorted(
self._equations.values(), key=lambda key: (key.update_order, key.varname)
),
doc=(
"A list of all equations, sorted "
"according to the order in which they should "
"be updated"
),
)
diff_eq_expressions = property(
lambda self: [
(varname, eq.expr)
for varname, eq in self.items()
if eq.type == DIFFERENTIAL_EQUATION
],
doc=(
"A list of (variable name, expression) "
"tuples of all differential equations."
),
)
eq_expressions = property(
lambda self: [
(varname, eq.expr)
for varname, eq in self.items()
if eq.type in (SUBEXPRESSION, DIFFERENTIAL_EQUATION)
],
doc="A list of (variable name, expression) tuples of all equations.",
)
# Sets of names
names = property(
lambda self: {eq.varname for eq in self.ordered},
doc="All variable names defined in the equations.",
)
diff_eq_names = property(
lambda self: {
eq.varname for eq in self.ordered if eq.type == DIFFERENTIAL_EQUATION
},
doc="All differential equation names.",
)
subexpr_names = property(
lambda self: {eq.varname for eq in self.ordered if eq.type == SUBEXPRESSION},
doc="All subexpression names.",
)
eq_names = property(
lambda self: {
eq.varname
for eq in self.ordered
if eq.type in (DIFFERENTIAL_EQUATION, SUBEXPRESSION)
},
doc="All equation names (including subexpressions).",
)
parameter_names = property(
lambda self: {eq.varname for eq in self.ordered if eq.type == PARAMETER},
doc="All parameter names.",
)
dimensions = property(
lambda self: {var: eq.dim for var, eq in self._equations.items()},
doc=(
"Dictionary of all internal variables and their "
"corresponding physical dimensions."
),
)
identifiers = property(
lambda self: set().union(*[eq.identifiers for eq in self._equations.values()])
- self.names,
doc=(
"Set of all identifiers used in the equations, "
"excluding the variables defined in the equations"
),
)
stochastic_variables = property(
lambda self: {
variable
for variable in self.identifiers
if variable == "xi" or variable.startswith("xi_")
}
)
# general properties
is_stochastic = property(
lambda self: len(self.stochastic_variables) > 0,
doc="Whether the equations are stochastic.",
)
stochastic_type = property(fget=_get_stochastic_type)
def _sort_subexpressions(self):
"""
Sorts the subexpressions in a way that resolves their dependencies
upon each other. After this method has been run, the subexpressions
returned by the ``ordered`` property are in the order in which
they should be updated
"""
# Get a dictionary of all the dependencies on other subexpressions,
# i.e. ignore dependencies on parameters and differential equations
static_deps = {}
for eq in self._equations.values():
if eq.type == SUBEXPRESSION:
static_deps[eq.varname] = [
dep
for dep in eq.identifiers
if dep in self._equations
and self._equations[dep].type == SUBEXPRESSION
]
try:
sorted_eqs = topsort(static_deps)
except ValueError:
raise ValueError(
"Cannot resolve dependencies between static "
"equations, dependencies contain a cycle."
)
# put the equations objects in the correct order
for order, static_variable in enumerate(sorted_eqs):
self._equations[static_variable].update_order = order
# Sort differential equations and parameters after subexpressions
for eq in self._equations.values():
if eq.type == DIFFERENTIAL_EQUATION:
eq.update_order = len(sorted_eqs)
elif eq.type == PARAMETER:
eq.update_order = len(sorted_eqs) + 1
@property
def dependencies(self):
"""
Calculate the dependencies of all differential equations and
subexpressions.
"""
# Create a dictionary mapping differential equations and
# subexpressions to a list of their dependencies within the equations
# (ignoring external constants, unit names, etc.)
# Note that a differential equation such as "dv/dt = -v / tau" does not
# mean that the variable "v" depends on itself. To make the distinction between
# a variable and its derivative, we use the variable name + the prime symbol
# in this dictionary.
# As an example, the equations:
# dv/dt = I_m / C_m : volt
# I_m = I_ext + I_pas : amp
# I_ext = 1*nA + sin(2*pi*100*Hz*t)*nA : amp
# I_pas = g_L*(E_L - v) : amp
# would be translated into the following dictionary
# {"v" : [],
# "v'": ["I_m"]
# "I_m": ["I_ext", "I_pas"],
# "I_ext": [],
# "I_pas": ["v"] }
deps = {}
for eq in self._equations.values():
if eq.type == SUBEXPRESSION:
name = eq.varname
elif eq.type == DIFFERENTIAL_EQUATION:
name = eq.varname + "'"
deps[eq.varname] = []
else:
continue
deps[name] = [
dep
for dep in eq.identifiers
if dep in self._equations and self._equations[dep].type != PARAMETER
]
try:
sorted_eqs = topsort(deps)
except ValueError:
raise ValueError(
"Cannot resolve dependencies between static "
"equations, dependencies contain a cycle."
)
# Remove the dummy entries for differential equations and rename
# x' → x
sorted_eqs = [
x.replace("'", "") for x in sorted_eqs if x not in self.diff_eq_names
]
# Now recursively fill in the dependencies – this only needs a single
# pass due to the previous sorting
deps = {}
Dependency = namedtuple(
"Dependency", ["equation", "via"], defaults=((),)
) # default for via is empty tuple
for eq in sorted_eqs:
dep_names = {
dep for dep in self._equations[eq].identifiers if dep in self._equations
}
deps[eq] = [Dependency(equation=self._equations[dep]) for dep in dep_names]
# add all indirect dependencies
for dep in dep_names:
for indirect_dep in deps.get(dep, []):
if indirect_dep.equation.varname == dep:
continue # do not go into recursion if a variable depends on itself
if any(
indirect_dep.equation.varname == existing_dep.equation.varname
for existing_dep in deps[eq]
):
continue # Do not add indirect dependencies for things we also depend on directly
deps[eq].append(
Dependency(
equation=indirect_dep.equation,
via=(dep,) + indirect_dep.via,
)
)
return deps
def check_units(self, group, run_namespace):
"""
Check all the units for consistency.
Parameters
----------
group : `Group`
The group providing the context
run_namespace : dict-like, optional
An additional namespace that is used for variable lookup (if not
defined, the implicit namespace of local variables is used).
level : int, optional
How much further to go up in the stack to find the calling frame
Raises
------
DimensionMismatchError
In case of any inconsistencies.
"""
all_variables = dict(group.variables)
external = frozenset().union(
*[expr.identifiers for _, expr in self.eq_expressions]
)
external -= set(all_variables.keys())
resolved_namespace = group.resolve_all(
external, run_namespace, user_identifiers=external
) # all variables are user defined
all_variables.update(resolved_namespace)
for var, eq in self._equations.items():
if eq.type == PARAMETER:
# no need to check units for parameters
continue
if eq.type == DIFFERENTIAL_EQUATION:
try:
check_dimensions(
str(eq.expr), self.dimensions[var] / second.dim, all_variables
)
except DimensionMismatchError as ex:
raise DimensionMismatchError(
"Inconsistent units in "
"differential equation "
f"defining variable '{eq.varname}':"
f"\n{ex.desc}",
*ex.dims,
) from ex
elif eq.type == SUBEXPRESSION:
try:
check_dimensions(str(eq.expr), self.dimensions[var], all_variables)
except DimensionMismatchError as ex:
raise DimensionMismatchError(
"Inconsistent units in "
f"subexpression {eq.varname}:"
f"\n%{ex.desc}",
*ex.dims,
) from ex
else:
raise AssertionError(f"Unknown equation type: '{eq.type}'")
def check_flags(self, allowed_flags, incompatible_flags=None):
"""
Check the list of flags.
Parameters
----------
allowed_flags : dict
A dictionary mapping equation types (PARAMETER,
DIFFERENTIAL_EQUATION, SUBEXPRESSION) to a list of strings (the
allowed flags for that equation type)
incompatible_flags : list of tuple
A list of flag combinations that are not allowed for the same
equation.
Notes
-----
Not specifying allowed flags for an equation type is the same as
specifying an empty list for it.
Raises
------
ValueError
If any flags are used that are not allowed.
"""
if incompatible_flags is None:
incompatible_flags = []
for eq in self.values():
for flag in eq.flags:
if eq.type not in allowed_flags or len(allowed_flags[eq.type]) == 0:
raise ValueError(
f"Equations of type '{eq.type}' cannot have any flags."
)
if flag not in allowed_flags[eq.type]:
raise ValueError(
f"Equations of type '{eq.type}' cannot have a "
f"flag '{flag}', only the following flags "
f"are allowed: {allowed_flags[eq.type]}"
)
# Check for incompatibilities
for flag_combinations in incompatible_flags:
if flag in flag_combinations:
remaining_flags = set(flag_combinations) - {flag}
for remaining_flag in remaining_flags:
if remaining_flag in eq.flags:
raise ValueError(
f"Flag '{flag}' cannot be "
"combined with flag "
f"'{remaining_flag}'"
)
############################################################################
# Representation
############################################################################
def __str__(self):
strings = [str(eq) for eq in self.ordered]
return "\n".join(strings)
def __repr__(self):
return f"<Equations object consisting of {len(self._equations)} equations>"
def _latex(self, *args):
equations = []
for eq in self._equations.values():
# do not use SingleEquations._latex here as we want nice alignment
varname = sympy.Symbol(eq.varname)
if eq.type == DIFFERENTIAL_EQUATION:
lhs = r"\frac{\mathrm{d}" + sympy.latex(varname) + r"}{\mathrm{d}t}"
else:
# Normal equation or parameter
lhs = varname
if not eq.type == PARAMETER:
rhs = str_to_sympy(eq.expr.code)
if len(eq.flags):
flag_str = ", flags: " + ", ".join(eq.flags)
else:
flag_str = ""
if eq.type == PARAMETER:
eq_latex = r"{} &&& \text{{(unit: ${}${})}}".format(
sympy.latex(lhs),
sympy.latex(get_unit(eq.dim)),
flag_str,
)
else:
eq_latex = r"{} &= {} && \text{{(unit of ${}$: ${}${})}}".format(
lhs, # already a string
sympy.latex(rhs),
sympy.latex(varname),
sympy.latex(get_unit(eq.dim)),
flag_str,
)
equations.append(eq_latex)
return r"\begin{align*}" + (r"\\" + "\n").join(equations) + r"\end{align*}"
def _repr_latex_(self):
return sympy.latex(self)
def _repr_pretty_(self, p, cycle):
"""Pretty printing for ipython"""
if cycle:
# Should never happen
raise AssertionError("Cyclical call of 'Equations._repr_pretty_'")
for eq in self._equations.values():
p.pretty(eq)
p.breakable("\n")
def is_stateful(expression, variables):
"""
Whether the given expression refers to stateful functions (and is therefore
not guaranteed to give the same result if called repetively).
Parameters
----------
expression : `sympy.Expression`
The sympy expression to check.
variables : dict
The dictionary mapping variable names to `Variable` or `Function`
objects.
Returns
-------
stateful : bool
``True``, if the given expression refers to a stateful function like
``rand()`` and ``False`` otherwise.
"""
func_name = str(expression.func)
func_variable = variables.get(func_name, None)
if func_variable is not None and not func_variable.stateless:
return True
for arg in expression.args:
if is_stateful(arg, variables):
return True
return False
def check_subexpressions(group, equations, run_namespace):
"""
Checks the subexpressions in the equations and raises an error if a
subexpression refers to stateful functions without being marked as
"constant over dt".
Parameters
----------
group : `Group`
The group providing the context.
equations : `Equations`
The equations to check.
run_namespace : dict
The run namespace for resolving variables.
Raises
------
SyntaxError
For subexpressions not marked as "constant over dt" that refer to
stateful functions.
"""
for eq in equations.ordered:
if eq.type == SUBEXPRESSION:
# Check whether the expression is stateful (most commonly by
# referring to rand() or randn()
variables = group.resolve_all(
eq.identifiers,
run_namespace,
# we don't need to raise any warnings
# for the user here, warnings will
# be raised in create_runner_codeobj
user_identifiers=set(),
)
expression = str_to_sympy(eq.expr.code, variables=variables)
# Check whether the expression refers to stateful functions
if is_stateful(expression, variables):
raise SyntaxError(
f"The subexpression '{eq.varname}' refers to a "
"stateful function (e.g. rand()). Such "
"expressions should only be evaluated "
"once per timestep, add the 'constant "
"over dt' flag."
)
def extract_constant_subexpressions(eqs):
without_const_subexpressions = []
const_subexpressions = []
for eq in eqs.ordered:
if eq.type == SUBEXPRESSION and "constant over dt" in eq.flags:
flags = set(eq.flags) - {"constant over dt"}
without_const_subexpressions.append(
SingleEquation(
PARAMETER, eq.varname, eq.dim, var_type=eq.var_type, flags=flags
)
)
const_subexpressions.append(eq)
else:
without_const_subexpressions.append(eq)
return (Equations(without_const_subexpressions), Equations(const_subexpressions))
|