File: group.py

package info (click to toggle)
brian 2.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,872 kB
  • sloc: python: 51,820; cpp: 2,033; makefile: 108; sh: 72
file content (1399 lines) | stat: -rw-r--r-- 56,390 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
"""
This module defines the `VariableOwner` class, a mix-in class for everything
that saves state variables, e.g. `Clock` or `NeuronGroup`, the class `Group`
for objects that in addition to storing state variables also execute code, i.e.
objects such as `NeuronGroup` or `StateMonitor` but not `Clock`, and finally
`CodeRunner`, a class to run code in the context of a `Group`.
"""

import inspect
import numbers
import weakref
from collections import OrderedDict
from collections.abc import Mapping

import numpy as np

from brian2.codegen.codeobject import create_runner_codeobj
from brian2.core.base import BrianObject, weakproxy_with_fallback
from brian2.core.functions import Function
from brian2.core.names import Nameable, find_name
from brian2.core.namespace import (
    DEFAULT_CONSTANTS,
    DEFAULT_FUNCTIONS,
    DEFAULT_UNITS,
    get_local_namespace,
)
from brian2.core.preferences import prefs
from brian2.core.variables import (
    ArrayVariable,
    AuxiliaryVariable,
    Constant,
    DynamicArrayVariable,
    LinkedVariable,
    Subexpression,
    Variable,
    Variables,
)
from brian2.equations.equations import BOOLEAN, FLOAT, INTEGER, Equations
from brian2.importexport.importexport import ImportExport
from brian2.units.fundamentalunits import (
    DIMENSIONLESS,
    DimensionMismatchError,
    fail_for_dimension_mismatch,
    get_unit,
)
from brian2.utils.logger import get_logger
from brian2.utils.stringtools import SpellChecker, get_identifiers

__all__ = ["Group", "VariableOwner", "CodeRunner"]

logger = get_logger(__name__)


def _display_value(obj):
    """
    Helper function for warning messages that display the value of objects. This
    functions returns a nicer representation for symbolic constants and
    functions.

    Parameters
    ----------
    obj : object
        The object to display

    Returns
    -------
    value : str
        A string representation of the object
    """
    if isinstance(obj, Function):
        return "<Function>"
    try:
        obj = obj.get_value()
    except AttributeError:
        pass
    try:
        obj = obj.value
    except AttributeError:
        pass

    # We (temporarily) set numpy's print options so that array with more than
    # 10 elements are only shown in an abbreviated way
    old_options = np.get_printoptions()
    np.set_printoptions(threshold=10)
    try:
        str_repr = repr(obj)
    except Exception:
        str_repr = f"<object of type {type(obj)}>"
    finally:
        np.set_printoptions(**old_options)
    return str_repr


def _conflict_warning(message, resolutions):
    """
    A little helper functions to generate warnings for logging. Specific
    to the `Group._resolve` method and should only be used by it.

    Parameters
    ----------
    message : str
        The first part of the warning message.
    resolutions : list of str
        A list of (namespace, object) tuples.
    """
    if len(resolutions) == 0:
        # nothing to warn about
        return
    elif len(resolutions) == 1:
        second_part = (
            "but the name also refers to a variable in the "
            f"{resolutions[0][0]} "
            f"namespace with value '{_display_value(resolutions[0][1])}'."
        )
    else:
        second_part = (
            "but the name also refers to a variable in the following "
            f"namespaces: {', '.join([r[0] for r in resolutions])}."
        )

    logger.warn(
        f"{message} {second_part}", "Group.resolve.resolution_conflict", once=True
    )


def get_dtype(equation, dtype=None):
    """
    Helper function to interpret the `dtype` keyword argument in `NeuronGroup`
    etc.

    Parameters
    ----------
    equation : `SingleEquation`
        The equation for which a dtype should be returned
    dtype : `dtype` or dict, optional
        Either the `dtype` to be used as a default dtype for all float variables
        (instead of the `core.default_float_dtype` preference) or a
        dictionary stating the `dtype` for some variables; all other variables
        will use the preference default

    Returns
    -------
    d : `dtype`
        The dtype for the variable defined in `equation`
    """
    # Check explicitly provided dtype for compatibility with the variable type
    if isinstance(dtype, Mapping):
        if equation.varname in dtype:
            BASIC_TYPES = {BOOLEAN: "b", INTEGER: "iu", FLOAT: "f"}
            provided_dtype = np.dtype(dtype[equation.varname])
            if provided_dtype.kind not in BASIC_TYPES[equation.var_type]:
                raise TypeError(
                    "Error determining dtype for variable "
                    f"{equation.varname}: {provided_dtype.name} is not "
                    f"a correct type for {equation.var_type} variables"
                )
            else:
                return dtype[equation.varname]
        else:  # continue as if no dtype had been specified at all
            dtype = None

    # Use default dtypes (or a provided standard dtype for floats)
    if equation.var_type == BOOLEAN:
        return bool
    elif equation.var_type == INTEGER:
        return prefs["core.default_integer_dtype"]
    elif equation.var_type == FLOAT:
        if dtype is not None:
            dtype = np.dtype(dtype)
            if not dtype.kind == "f":
                raise TypeError(f"{dtype} is not a valid floating point dtype.")
            return dtype
        else:
            return prefs["core.default_float_dtype"]
    else:
        raise ValueError(
            "Do not know how to determine a dtype for "
            f"variable '{equation.varname}' of type {equation.var_type}"
        )


def _same_value(obj1, obj2):
    """
    Helper function used during namespace resolution.
    """
    if obj1 is obj2:
        return True
    try:
        obj1 = obj1.get_value()
    except (AttributeError, TypeError):
        pass

    try:
        obj2 = obj2.get_value()
    except (AttributeError, TypeError):
        pass

    return obj1 is obj2


def _same_function(func1, func2):
    """
    Helper function, used during namespace resolution for comparing whether to
    functions are the same. This takes care of treating a function and a
    `Function` variables whose `Function.pyfunc` attribute matches as the
    same. This prevents the user from getting spurious warnings when having
    for example a numpy function such as :np:func:`~random.randn` in the local
    namespace, while the ``randn`` symbol in the numpy namespace used for the
    code objects refers to a `RandnFunction` specifier.
    """
    # use the function itself if it doesn't have a pyfunc attribute
    func1 = getattr(func1, "pyfunc", func1)
    func2 = getattr(func2, "pyfunc", func2)

    return func1 is func2


class Indexing:
    """
    Object responsible for calculating flat index arrays from arbitrary group-
    specific indices. Stores strong references to the necessary variables so
    that basic indexing (i.e. slicing, integer arrays/values, ...) works even
    when the respective `VariableOwner` no longer exists. Note that this object
    does not handle string indexing.
    """

    def __init__(self, group, default_index="_idx"):
        self.group = weakref.proxy(group)
        self.N = group.variables["N"]
        self.default_index = default_index

    def __call__(self, item=slice(None), index_var=None):  # noqa: B008
        """
        Return flat indices to index into state variables from arbitrary
        group specific indices. In the default implementation, raises an error
        for multidimensional indices and transforms slices into arrays.

        Parameters
        ----------
        item : slice, array, int
            The indices to translate.

        Returns
        -------
        indices : `numpy.ndarray`
            The flat indices corresponding to the indices given in `item`.

        See Also
        --------
        SynapticIndexing
        """
        if index_var is None:
            index_var = self.default_index

        if hasattr(item, "_indices"):
            item = item._indices()

        if isinstance(item, tuple):
            raise IndexError(
                f"Can only interpret 1-d indices, got {len(item)} dimensions."
            )
        else:
            if isinstance(item, str) and item == "True":
                item = slice(None)
            if isinstance(item, slice):
                if index_var == "0":
                    return 0
                if index_var == "_idx":
                    start, stop, step = item.indices(self.N.item())
                else:
                    start, stop, step = item.indices(index_var.size)
                index_array = np.arange(start, stop, step, dtype=np.int32)
            else:
                index_array = np.asarray(item)
                if index_array.dtype == bool:
                    index_array = np.nonzero(index_array)[0]
                elif not np.issubdtype(index_array.dtype, np.signedinteger):
                    raise TypeError(
                        "Indexing is only supported for integer "
                        "and boolean arrays, not for type "
                        f"{index_array.dtype}"
                    )

            if index_var != "_idx":
                try:
                    return index_var.get_value()[index_array]
                except IndexError as ex:
                    # We try to emulate numpy's indexing semantics here:
                    # slices never lead to IndexErrors, instead they return an
                    # empty array if they don't match anything
                    if isinstance(item, slice):
                        return np.array([], dtype=np.int32)
                    else:
                        raise ex
            else:
                return index_array


class IndexWrapper:
    """
    Convenience class to allow access to the indices via indexing syntax. This
    allows for example to get all indices for synapses originating from neuron
    10 by writing `synapses.indices[10, :]` instead of
    `synapses._indices.((10, slice(None))`.
    """

    def __init__(self, group):
        self.group = weakref.proxy(group)
        self.indices = group._indices

    def __getitem__(self, item):
        if isinstance(item, str):
            variables = Variables(None)
            variables.add_auxiliary_variable("_indices", dtype=np.int32)
            variables.add_auxiliary_variable("_cond", dtype=bool)

            abstract_code = f"_cond = {item}"
            namespace = get_local_namespace(level=1)
            from brian2.devices.device import get_device

            device = get_device()
            codeobj = create_runner_codeobj(
                self.group,
                abstract_code,
                "group_get_indices",
                run_namespace=namespace,
                additional_variables=variables,
                codeobj_class=device.code_object_class(
                    fallback_pref="codegen.string_expression_target"
                ),
            )
            return codeobj()
        else:
            return self.indices(item)


class VariableOwner(Nameable):
    """
    Mix-in class for accessing arrays by attribute.

    # TODO: Overwrite the __dir__ method to return the state variables
    # (should make autocompletion work)
    """

    def _enable_group_attributes(self):
        if not hasattr(self, "variables"):
            raise ValueError(
                "Classes derived from VariableOwner need a variables attribute."
            )
        if "N" not in self.variables:
            raise ValueError("Each VariableOwner needs an 'N' variable.")
        if not hasattr(self, "codeobj_class"):
            self.codeobj_class = None
        if not hasattr(self, "_indices"):
            self._indices = Indexing(self)
        if not hasattr(self, "indices"):
            self.indices = IndexWrapper(self)
        if not hasattr(self, "_stored_states"):
            self._stored_states = {}
        self._group_attribute_access_active = True

    def state(self, name, use_units=True, level=0):
        """
        Return the state variable in a way that properly supports indexing in
        the context of this group

        Parameters
        ----------
        name : str
            The name of the state variable
        use_units : bool, optional
            Whether to use the state variable's unit.
        level : int, optional
            How much farther to go down in the stack to find the namespace.
        Returns
        -------
        var : `VariableView` or scalar value
            The state variable's value that can be indexed (for non-scalar
            values).
        """
        try:
            var = self.variables[name]
        except KeyError as exc:
            raise KeyError(f"State variable {name} not found.") from exc

        if use_units:
            return var.get_addressable_value_with_unit(name=name, group=self)
        else:
            return var.get_addressable_value(name=name, group=self)

    def __getattr__(self, name):
        # We do this because __setattr__ and __getattr__ are not active until
        # _group_attribute_access_active attribute is set, and if it is set,
        # then __getattr__ will not be called. Therefore, if getattr is called
        # with this name, it is because it hasn't been set yet and so this
        # method should raise an AttributeError to agree that it hasn't been
        # called yet.
        if name == "_group_attribute_access_active":
            raise AttributeError
        if "_group_attribute_access_active" not in self.__dict__:
            raise AttributeError
        if (
            name in self.__getattribute__("__dict__")
            or name in self.__getattribute__("__class__").__dict__
        ):
            # Makes sure that classes can override the "variables" mechanism
            # with instance/class attributes and properties
            return object.__getattribute__(self, name)
        # We want to make sure that accessing variables without units is fast
        # because this is what is used during simulations
        # We do not specifically check for len(name) here, we simply assume
        # that __getattr__ is not called with an empty string (which wouldn't
        # be possible using the normal dot syntax, anyway)
        try:
            if name[-1] == "_":
                name = name[:-1]
                use_units = False
            else:
                use_units = True
            return self.state(name, use_units)

        except KeyError:
            raise AttributeError(f"No attribute with name {name}")

    def __setattr__(self, key, value, level=0):
        # attribute access is switched off until this attribute is created by
        # _enable_group_attributes
        if not hasattr(self, "_group_attribute_access_active") or key in self.__dict__:
            object.__setattr__(self, key, value)
        elif key in getattr(self, "_linked_variables", set()):
            if not isinstance(value, LinkedVariable):
                raise ValueError(
                    "Cannot set a linked variable directly, link "
                    "it to another variable using 'linked_var'."
                )
            linked_var = value.variable

            eq = self.equations[key]
            if eq.dim is not linked_var.dim:
                raise DimensionMismatchError(
                    f"Unit of variable '{key}' does not "
                    "match its link target "
                    f"'{linked_var.name}'"
                )

            if not isinstance(linked_var, Subexpression):
                var_length = len(linked_var)
            else:
                var_length = len(linked_var.owner)

            if value.index is not None:
                index = self._linked_var_index(key, value, var_length)
            else:
                index = self._linked_var_automatic_index(key, value, var_length)
            self.variables.add_reference(key, value.group, value.name, index=index)
            source = (value.variable.owner.name,)
            sourcevar = value.variable.name
            log_msg = f"Setting {self.name}.{key} as a link to {source}.{sourcevar}"
            if index is not None:
                log_msg += f'(using "{index}" as index variable)'
            logger.diagnostic(log_msg)
        else:
            if isinstance(value, LinkedVariable):
                raise TypeError(
                    f"Cannot link variable '{key}', it has to be marked "
                    "as a linked variable with '(linked)' in the model "
                    "equations."
                )
            else:
                if (
                    key in self.__getattribute__("__dict__")
                    or key in self.__getattribute__("__class__").__dict__
                ):
                    # Makes sure that classes can override the "variables" mechanism
                    # with instance/class attributes and properties
                    return object.__setattr__(self, key, value)
                elif key in self.variables:
                    var = self.variables[key]
                    if not isinstance(value, str):
                        if var.dim is DIMENSIONLESS:
                            fail_for_dimension_mismatch(
                                value,
                                var.dim,
                                "%s should be set with a dimensionless value, but got {value}"
                                % key,
                                value=value,
                            )
                        else:
                            fail_for_dimension_mismatch(
                                value,
                                var.dim,
                                "%s should be set with a value with units %r, but got {value}"
                                % (key, get_unit(var.dim)),
                                value=value,
                            )
                    if var.read_only:
                        raise TypeError(f"Variable {key} is read-only.")
                    # Make the call X.var = ... equivalent to X.var[:] = ...
                    var.get_addressable_value_with_unit(key, self).set_item(
                        slice(None), value, level=level + 1
                    )
                elif len(key) and key[-1] == "_" and key[:-1] in self.variables:
                    # no unit checking
                    var = self.variables[key[:-1]]
                    if var.read_only:
                        raise TypeError(f"Variable {key[:-1]} is read-only.")
                    # Make the call X.var = ... equivalent to X.var[:] = ...
                    var.get_addressable_value(key[:-1], self).set_item(
                        slice(None), value, level=level + 1
                    )
                elif hasattr(self, key) or key.startswith("_"):
                    object.__setattr__(self, key, value)
                else:
                    # Try to suggest the correct name in case of a typo
                    checker = SpellChecker(
                        [
                            varname
                            for varname, var in self.variables.items()
                            if not (varname.startswith("_") or var.read_only)
                        ]
                    )
                    if key.endswith("_"):
                        suffix = "_"
                        key = key[:-1]
                    else:
                        suffix = ""
                    error_msg = f'Could not find a state variable with name "{key}".'
                    suggestions = checker.suggest(key)
                    if len(suggestions) == 1:
                        (suggestion,) = suggestions
                        error_msg += f' Did you mean to write "{suggestion}{suffix}"?'
                    elif len(suggestions) > 1:
                        suggestion_str = ", ".join(
                            [f"'{suggestion}{suffix}'" for suggestion in suggestions]
                        )
                        error_msg += f" Did you mean to write any of the following: {suggestion_str} ?"
                    error_msg += (
                        " Use the add_attribute method if you intend to add "
                        "a new attribute to the object."
                    )
                    raise AttributeError(error_msg)

    def _linked_var_automatic_index(self, var_name, linked_var, var_length):
        # The check at the end is to avoid the case that a size 1 NeuronGroup
        # links to another NeuronGroup of size 1 and cannot do certain operations
        # since the linked variable is considered scalar.
        if linked_var.variable.scalar or (
            var_length == 1 and getattr(self, "_N", 0) != 1
        ):
            index = "0"
        else:
            index = linked_var.group.variables.indices[linked_var.name]
            if index == "_idx":
                target_length = var_length
            else:
                target_length = len(linked_var.group.variables[index])
                # we need a name for the index that does not clash with
                # other names and a reference to the index
                new_index = f"_{linked_var.name}_index_{index}"
                self.variables.add_reference(new_index, linked_var.group, index)
                index = new_index

            if len(self) != target_length:
                raise ValueError(
                    f"Cannot link variable '{var_name}' to "
                    f"'{linked_var.variable.name}', the size of the "
                    "target group does not match "
                    f"({len(self)} != {target_length}). You can "
                    "provide an indexing scheme with the "
                    "'index' keyword to link groups with "
                    "different sizes"
                )
        return index

    def _linked_var_index(self, var_name, linked_var, target_size):
        if isinstance(linked_var.index, str):
            if linked_var.index not in self.variables:
                raise ValueError(f"Index variable '{linked_var.index}' not found.")
            if self.variables.indices[linked_var.index] != self.variables.default_index:
                raise ValueError(
                    f"Index variable '{linked_var.index}' should use the default index itself."
                )
            if not np.issubdtype(self.variables[linked_var.index].dtype, np.integer):
                raise TypeError(
                    f"Index variable '{linked_var.index}' should be an integer parameter."
                )
            index = linked_var.index
        else:
            # Index arrays are not allowed for classes with dynamic size (Synapses)
            if not isinstance(self.variables["N"], Constant):
                raise TypeError(
                    "Cannot link a variable with an index array for a class with dynamic size – use a variable name instead."
                )
            try:
                index_array = np.asarray(linked_var.index)
                if not np.issubdtype(index_array.dtype, int):
                    raise TypeError()
            except TypeError:
                raise TypeError(
                    "The index for a linked variable has to be an integer array"
                )
            size = len(index_array)
            source_index = linked_var.group.variables.indices[linked_var.name]
            if source_index not in ("_idx", "0"):
                # we are indexing into an already indexed variable,
                # calculate the indexing into the target variable
                index_array = linked_var.group.variables[source_index].get_value()[
                    index_array
                ]

            if not index_array.ndim == 1 or size != len(self):
                raise TypeError(
                    f"Index array for linked variable '{var_name}' "
                    "has to be a one-dimensional array of "
                    f"length {len(self)}, but has shape "
                    f"{index_array.shape!s}"
                )
            if min(index_array) < 0 or max(index_array) >= target_size:
                raise ValueError(
                    f"Index array for linked variable {var_name} "
                    "contains values outside of the valid "
                    f"range [0, {target_size}["
                )
            self.variables.add_array(
                f"_{var_name}_indices",
                size=size,
                dtype=index_array.dtype,
                constant=True,
                read_only=True,
                values=index_array,
            )
            index = f"_{var_name}_indices"
        return index

    def add_attribute(self, name):
        """
        Add a new attribute to this group. Using this method instead of simply
        assigning to the new attribute name is necessary because Brian will
        raise an error in that case, to avoid bugs passing unnoticed
        (misspelled state variable name, un-declared state variable, ...).

        Parameters
        ----------
        name : str
            The name of the new attribute

        Raises
        ------
        AttributeError
            If the name already exists as an attribute or a state variable.
        """
        if name in self.variables:
            raise AttributeError(
                f'Cannot add an attribute "{name}", it is already a state variable of'
                " this group."
            )
        if hasattr(self, name):
            raise AttributeError(
                f'Cannot add an attribute "{name}", it is already an attribute of this'
                " group."
            )
        object.__setattr__(self, name, None)

    def get_states(
        self,
        vars=None,
        units=True,
        format="dict",
        subexpressions=False,
        read_only_variables=True,
        level=0,
    ):
        """
        Return a copy of the current state variable values. The returned arrays
        are copies of the actual arrays that store the state variable values,
        therefore changing the values in the returned dictionary will not affect
        the state variables.

        Parameters
        ----------
        vars : list of str, optional
            The names of the variables to extract. If not specified, extract
            all state variables (except for internal variables, i.e. names that
            start with ``'_'``). If the ``subexpressions`` argument is ``True``,
            the current values of all subexpressions are returned as well.
        units : bool, optional
            Whether to include the physical units in the return value. Defaults
            to ``True``.
        format : str, optional
            The output format. Defaults to ``'dict'``.
        subexpressions: bool, optional
            Whether to return subexpressions when no list of variable names
            is given. Defaults to ``False``. This argument is ignored if an
            explicit list of variable names is given in ``vars``.
        read_only_variables : bool, optional
            Whether to return read-only variables (e.g. the number of neurons,
            the time, etc.). Setting it to ``False`` will assure that the
            returned state can later be used with `set_states`. Defaults to
            ``True``.
        level : int, optional
            How much higher to go up the stack to resolve external variables.
            Only relevant if extracting subexpressions that refer to external
            variables.

        Returns
        -------
        values : dict or specified format
            The variables specified in ``vars``, in the specified ``format``.

        """
        if format not in ImportExport.methods:
            raise NotImplementedError(f"Format '{format}' is not supported")
        if vars is None:
            vars = []
            for name, var in self.variables.items():
                if name.startswith("_"):
                    continue
                if subexpressions or not isinstance(var, Subexpression):
                    if read_only_variables or not getattr(var, "read_only", False):
                        if not isinstance(var, AuxiliaryVariable):
                            vars.append(name)
        data = ImportExport.methods[format].export_data(
            self, vars, units=units, level=level
        )
        return data

    def set_states(self, values, units=True, format="dict", level=0):
        """
        Set the state variables.

        Parameters
        ----------
        values : depends on ``format``
            The values according to ``format``.
        units : bool, optional
            Whether the ``values`` include physical units. Defaults to ``True``.
        format : str, optional
            The format of ``values``. Defaults to ``'dict'``
        level : int, optional
            How much higher to go up the stack to resolve external variables.
            Only relevant when using string expressions to set values.
        """
        # For the moment, 'dict' is the only supported format -- later this will
        # be made into an extensible system, see github issue #306
        if format not in ImportExport.methods:
            raise NotImplementedError(f"Format '{format}' is not supported")
        ImportExport.methods[format].import_data(self, values, units=units, level=level)

    def check_variable_write(self, variable):
        """
        Function that can be overwritten to raise an error if writing to a
        variable should not be allowed. Note that this does *not* deal with
        incorrect writes that are general to all kind of variables (incorrect
        units, writing to a read-only variable, etc.). This function is only
        used for type-specific rules, e.g. for raising an error in `Synapses`
        when writing to a synaptic variable before any `~Synapses.connect`
        call.

        By default this function does nothing.

        Parameters
        ----------
        variable : `Variable`
            The variable that the user attempts to set.
        """
        pass

    def _full_state(self):
        state = {}
        for var in self.variables.values():
            if not isinstance(var, ArrayVariable):
                continue  # we are only interested in arrays
            if var.owner is None or var.owner.name != self.name:
                continue  # we only store the state of our own variables

            state[var.name] = (var.get_value().copy(), var.size)

        return state

    def _restore_from_full_state(self, state):
        for var_name, (values, size) in state.items():
            var = self.variables[var_name]
            if isinstance(var, DynamicArrayVariable):
                var.resize(size)
            var.set_value(values)

    def _check_expression_scalar(self, expr, varname, level=0, run_namespace=None):
        """
        Helper function to check that an expression only refers to scalar
        variables, used when setting a scalar variable with a string expression.

        Parameters
        ----------
        expr : str
            The expression to check.
        varname : str
            The variable that is being set (only used for the error message)
        level : int, optional
            How far to go up in the stack to find the local namespace (if
            `run_namespace` is not set).
        run_namespace : dict-like, optional
            A specific namespace provided for this expression.

        Raises
        ------
        ValueError
            If the expression refers to a non-scalar variable.
        """
        identifiers = get_identifiers(expr)
        referred_variables = self.resolve_all(
            identifiers, run_namespace=run_namespace, level=level + 1
        )
        for ref_varname, ref_var in referred_variables.items():
            if not getattr(ref_var, "scalar", False):
                raise ValueError(
                    "String expression for setting scalar "
                    f"variable '{varname} refers to '{ref_varname} which "
                    "is not scalar."
                )

    def __len__(self):
        return self.variables["N"].item()


class Group(VariableOwner, BrianObject):
    def _resolve(
        self, identifier, run_namespace, user_identifier=True, additional_variables=None
    ):
        """
        Resolve an identifier (i.e. variable, constant or function name) in the
        context of this group. This function will first lookup the name in the
        state variables, then look for a standard function or unit of that
        name and finally look in `Group.namespace` and in `run_namespace`. If
        the latter is not given, it will try to find the variable in the local
        namespace where the original function call took place. See
        :ref:`external-variables`.

        Parameters
        ----------
        identifiers : str
            The name to look up.
        run_namespace : dict-like, optional
            An additional namespace that is used for variable lookup (if not
            defined, the implicit namespace of local variables is used).
        user_identifier : bool, optional
            Whether this is an identifier that was used by the user (and not
            something automatically generated that the user might not even
            know about). Will be used to determine whether to display a
            warning in the case of namespace clashes. Defaults to ``True``.
        additional_variables : dict-like, optional
            An additional mapping of names to `Variable` objects that will be
            checked before `Group.variables`.

        Returns
        -------
        obj : `Variable` or `Function`
            Returns a `Variable` object describing the variable or a `Function`
            object for a function. External variables are represented as
            `Constant` objects

        Raises
        ------
        KeyError
            If the `identifier` could not be resolved
        """
        resolved_internal = None

        if identifier in (additional_variables or {}):
            resolved_internal = additional_variables[identifier]
        elif identifier in getattr(self, "variables", {}):
            resolved_internal = self.variables[identifier]

        if resolved_internal is not None:
            if not user_identifier:
                return resolved_internal  # no need to go further
            # We already found the identifier, but we try to resolve it in the
            # external namespace nevertheless, to report a warning if it is
            # present there as well.
            self._resolve_external(
                identifier,
                run_namespace=run_namespace,
                internal_variable=resolved_internal,
            )
            return resolved_internal

        # We did not find the name internally, try to resolve it in the external
        # namespace
        return self._resolve_external(identifier, run_namespace=run_namespace)

    def resolve_all(
        self,
        identifiers,
        run_namespace,
        user_identifiers=None,
        additional_variables=None,
    ):
        """
        Resolve a list of identifiers. Calls `Group._resolve` for each
        identifier.

        Parameters
        ----------
        identifiers : iterable of str
            The names to look up.
        run_namespace : dict-like, optional
            An additional namespace that is used for variable lookup (if not
            defined, the implicit namespace of local variables is used).
        user_identifiers : iterable of str, optional
            The names in ``identifiers`` that were provided by the user (i.e.
            are part of user-specified equations, abstract code, etc.). Will
            be used to determine when to issue namespace conflict warnings. If
            not specified, will be assumed to be identical to ``identifiers``.
        additional_variables : dict-like, optional
            An additional mapping of names to `Variable` objects that will be
            checked before `Group.variables`.

        Returns
        -------
        variables : dict of `Variable` or `Function`
            A mapping from name to `Variable`/`Function` object for each of the
            names given in `identifiers`

        Raises
        ------
        KeyError
            If one of the names in `identifier` cannot be resolved
        """
        if user_identifiers is None:
            user_identifiers = identifiers
        assert isinstance(run_namespace, Mapping)
        resolved = {}
        for identifier in identifiers:
            resolved[identifier] = self._resolve(
                identifier,
                user_identifier=identifier in user_identifiers,
                additional_variables=additional_variables,
                run_namespace=run_namespace,
            )
        return resolved

    def _resolve_external(
        self, identifier, run_namespace, user_identifier=True, internal_variable=None
    ):
        """
        Resolve an external identifier in the context of a `Group`. If the `Group`
        declares an explicit namespace, this namespace is used in addition to the
        standard namespace for units and functions. Additionally, the namespace in
        the `run_namespace` argument (i.e. the namespace provided to `Network.run`)
        is used.

        Parameters
        ----------
        identifier : str
            The name to resolve.
        group : `Group`
            The group that potentially defines an explicit namespace for looking up
            external names.
        run_namespace : dict
            A namespace (mapping from strings to objects), as provided as an
            argument to the `Network.run` function or returned by
            `get_local_namespace`.
        user_identifier : bool, optional
            Whether this is an identifier that was used by the user (and not
            something automatically generated that the user might not even
            know about). Will be used to determine whether to display a
            warning in the case of namespace clashes. Defaults to ``True``.
        internal_variable : `Variable`, optional
            The internal variable object that corresponds to this name (if any).
            This is used to give warnings if it also corresponds to a variable
            from an external namespace.
        """
        # We save tuples of (namespace description, referred object) to
        # give meaningful warnings in case of duplicate definitions
        matches = []

        namespaces = OrderedDict()
        # Default namespaces (units and functions)
        namespaces["constants"] = DEFAULT_CONSTANTS
        namespaces["units"] = DEFAULT_UNITS
        namespaces["functions"] = DEFAULT_FUNCTIONS
        if getattr(self, "namespace", None) is not None:
            namespaces["group-specific"] = self.namespace

        # explicit or implicit run namespace
        namespaces["run"] = run_namespace

        for description, namespace in namespaces.items():
            if identifier in namespace:
                match = namespace[identifier]
                if (
                    isinstance(
                        match,
                        (numbers.Number, np.ndarray, np.number, Function, Variable),
                    )
                ) or (
                    inspect.isfunction(match)
                    and hasattr(match, "_arg_units")
                    and hasattr(match, "_return_unit")
                ):
                    matches.append((description, match))

        if len(matches) == 0:
            # No match at all
            if internal_variable is not None:
                return None
            else:
                # Give a more detailed explanation for the lastupdate variable
                # that was removed with PR #1003
                if identifier == "lastupdate":
                    error_msg = (
                        'The identifier "lastupdate" could not be '
                        "resolved. Note that this variable is only "
                        "automatically defined for models with "
                        "event-driven synapses. You can define it "
                        'manually by adding "lastupdate : second" to '
                        'the equations and setting "lastupdate = t" '
                        "at the end of your on_pre and/or on_post "
                        "statements."
                    )
                else:
                    error_msg = f'The identifier "{identifier}" could not be resolved.'
                raise KeyError(error_msg)

        elif len(matches) > 1:
            # Possibly, all matches refer to the same object
            first_obj = matches[0][1]
            found_mismatch = False
            for m in matches:
                if _same_value(m[1], first_obj):
                    continue
                if _same_function(m[1], first_obj):
                    continue
                try:
                    proxy = weakref.proxy(first_obj)
                    if m[1] is proxy:
                        continue
                except TypeError:
                    pass

                # Found a mismatch
                found_mismatch = True
                break

            if found_mismatch and user_identifier and internal_variable is None:
                _conflict_warning(
                    'The name "%s" refers to different objects '
                    "in different namespaces used for resolving "
                    'names in the context of group "%s". '
                    "Will use the object from the %s namespace "
                    "with the value %s,"
                    % (
                        identifier,
                        getattr(self, "name", "<unknown>"),
                        matches[0][0],
                        _display_value(first_obj),
                    ),
                    matches[1:],
                )

        if internal_variable is not None and user_identifier:
            # Filter out matches that are identical (a typical case being an
            # externally defined "N" with the the number of neurons and a later
            # use of "N" in an expression (which refers to the internal variable
            # storing the number of neurons in the group)
            if isinstance(internal_variable, Constant):
                filtered_matches = []
                for match in matches:
                    if not _same_value(match[1], internal_variable):
                        filtered_matches.append(match)
            else:
                filtered_matches = matches
            if len(filtered_matches) == 0:
                pass  # Nothing to warn about
            else:
                warning_message = (
                    f"'{identifier}' is an internal variable of group "
                    f"'{self.name}', but also exists in the "
                )
                if len(matches) == 1:
                    namespace = filtered_matches[0][0]
                    value = _display_value(filtered_matches[0][1])
                    warning_message += f"{namespace} namespace with the value {value}. "
                else:
                    namespaces_list = " ,".join(match[0] for match in filtered_matches)
                    warning_message += f"following namespaces: {namespaces_list}. "
                warning_message += "The internal variable will be used."
                logger.warn(
                    warning_message, "Group.resolve.resolution_conflict", once=True
                )

        if internal_variable is not None:
            return None  # We were only interested in the warnings above

        # use the first match (according to resolution order)
        resolved = matches[0][1]

        # Replace pure Python functions by a Functions object
        if callable(resolved) and not isinstance(resolved, Function):
            resolved = Function(
                resolved,
                arg_units=getattr(resolved, "_arg_units", None),
                arg_names=getattr(resolved, "_arg_names", None),
                return_unit=getattr(resolved, "_return_unit", None),
                stateless=getattr(resolved, "stateless", False),
            )

        if not isinstance(resolved, (Function, Variable)):
            # Wrap the value in a Constant object
            dimensions = getattr(resolved, "dim", DIMENSIONLESS)
            value = np.asarray(resolved)
            if value.shape != ():
                raise KeyError(
                    f"Variable {identifier} was found in the namespace, but is not a"
                    " scalar value"
                )
            resolved = Constant(identifier, dimensions=dimensions, value=value)

        return resolved

    def runner(self, *args, **kwds):
        raise AttributeError("The 'runner' method has been renamed to 'run_regularly'.")

    def custom_operation(self, *args, **kwds):
        raise AttributeError(
            "The 'custom_operation' method has been renamed to 'run_regularly'."
        )

    def run_regularly(
        self,
        code,
        dt=None,
        clock=None,
        when="start",
        order=0,
        name=None,
        codeobj_class=None,
    ):
        """
        Run abstract code in the group's namespace. The created `CodeRunner`
        object will be automatically added to the group, it therefore does not
        need to be added to the network manually. However, a reference to the
        object will be returned, which can be used to later remove it from the
        group or to set it to inactive.

        Parameters
        ----------
        code : str
            The abstract code to run.
        dt : `Quantity`, optional
            The time step to use for this custom operation. Cannot be combined
            with the `clock` argument.
        clock : `Clock`, optional
            The update clock to use for this operation. If neither a clock nor
            the `dt` argument is specified, defaults to the clock of the group.
        when : str, optional
            When to run within a time step, defaults to the ``'start'`` slot.
            See :ref:`scheduling` for possible values.
        name : str, optional
            A unique name, if non is given the name of the group appended with
            'run_regularly', 'run_regularly_1', etc. will be used. If a
            name is given explicitly, it will be used as given (i.e. the group
            name will not be prepended automatically).
        codeobj_class : class, optional
            The `CodeObject` class to run code with. If not specified, defaults
            to the `group`'s ``codeobj_class`` attribute.

        Returns
        -------
        obj : `CodeRunner`
            A reference to the object that will be run.
        """
        if name is None:
            names = [o.name for o in self.contained_objects]
            name = find_name(f"{self.name}_run_regularly*", names)

        if dt is None and clock is None:
            clock = self._clock

        # Subgroups are normally not included in their parent's
        # contained_objects list, since there's no need to include them in the
        # network (they don't perform any computation on their own). However,
        # if a subgroup declares a `run_regularly` operation, then we want to
        # include this operation automatically, i.e. with the parent group
        # (adding just the run_regularly operation to the parent group's
        # contained objects would no be enough, since the CodeObject needs a
        # reference to the group providing the context for the operation, i.e.
        # the subgroup instead of the parent group. See github issue #922
        source_group = getattr(self, "source", None)
        if source_group is not None:
            if self not in source_group.contained_objects:
                source_group.contained_objects.append(self)

        runner = CodeRunner(
            self,
            "stateupdate",
            code=code,
            name=name,
            dt=dt,
            clock=clock,
            when=when,
            order=order,
            codeobj_class=codeobj_class,
        )
        self.contained_objects.append(runner)
        return runner

    def _check_for_invalid_states(self):
        """
        Checks if any state variables updated by differential equations have
        invalid values, and logs a warning if so.
        """
        equations = getattr(self, "equations", None)
        if not isinstance(equations, Equations):
            return
        for varname in equations.diff_eq_names:
            self._check_for_invalid_values(
                varname, self.state(varname, use_units=False)
            )

    def _check_for_invalid_values(self, k, v):
        """
        Checks if variable named k value v has invalid values, and logs a
        warning if so.
        """
        v = np.asarray(v)
        if np.isnan(v).any() or (np.abs(v) > 1e50).any():
            logger.warn(
                f"{self.name}'s variable '{k}' has NaN, very large values, "
                "or encountered an error in numerical integration. "
                "This is usually a sign that an unstable or invalid "
                "integration method was "
                "chosen.",
                name_suffix="invalid_values",
                once=True,
            )


class CodeRunner(BrianObject):
    """
    A "code runner" that runs a `CodeObject` every timestep and keeps a
    reference to the `Group`. Used in `NeuronGroup` for `Thresholder`,
    `Resetter` and `StateUpdater`.

    On creation, we try to run the before_run method with an empty additional
    namespace (see `Network.before_run`). If the namespace is already complete
    this might catch unit mismatches.

    Parameters
    ----------
    group : `Group`
        The group to which this object belongs.
    template : `Template`
        The template that should be used for code generation
    code : str, optional
        The abstract code that should be executed every time step. The
        `update_abstract_code` method might generate this code dynamically
        before every run instead.
    dt : `Quantity`, optional
        The time step to be used for the simulation. Cannot be combined with
        the `clock` argument.
    user_code : str, optional
        The abstract code as specified by the user, i.e. without any additions
        of internal code that the user not necessarily knows about. This will
        be used for warnings and error messages.
    clock : `Clock`, optional
        The update clock to be used. If neither a clock, nor the `dt` argument
        is specified, the `defaultclock` will be used.
    when : str, optional
        In which scheduling slot to execute the operation during a time step.
        Defaults to ``'start'``. See :ref:`scheduling` for possible values.
    order : int, optional
        The priority of this operation for operations occurring at the same time
        step and in the same scheduling slot. Defaults to 0.
    name : str, optional
        The name for this object.
    check_units : bool, optional
        Whether the units should be checked for consistency before a run. Is
        activated (``True``) by default but should be switched off for state
        updaters (units are already checked for the equations and the generated
        abstract code might have already replaced variables with their unit-less
        values)
    template_kwds : dict, optional
        A dictionary of additional information that is passed to the template.
    needed_variables: list of str, optional
        A list of variables that are neither present in the abstract code, nor
        in the ``USES_VARIABLES`` statement in the template. This is only
        rarely necessary, an example being a `StateMonitor` where the
        names of the variables are neither known to the template nor included
        in the abstract code statements.
    override_conditional_write: list of str, optional
        A list of variable names which are used as conditions (e.g. for
        refractoriness) which should be ignored.
    codeobj_class : class, optional
        The `CodeObject` class to run code with. If not specified, defaults to
        the `group`'s ``codeobj_class`` attribute.
    generate_empty_code : bool, optional
        Whether to generate a `CodeObject` if there is no abstract code to
        execute. Defaults to ``True`` but should be switched off e.g. for a
        `StateUpdater` when there is nothing to do.
    """

    add_to_magic_network = True
    invalidates_magic_network = True

    def __init__(
        self,
        group,
        template,
        code="",
        user_code=None,
        dt=None,
        clock=None,
        when="start",
        order=0,
        name="coderunner*",
        check_units=True,
        template_kwds=None,
        needed_variables=None,
        override_conditional_write=None,
        codeobj_class=None,
        generate_empty_code=True,
    ):
        BrianObject.__init__(
            self, clock=clock, dt=dt, when=when, order=order, name=name
        )
        self.group = weakproxy_with_fallback(group)
        self.template = template
        self.user_code = user_code
        self.abstract_code = code
        self.check_units = check_units
        if needed_variables is None:
            needed_variables = []
        self.needed_variables = needed_variables
        self.template_kwds = template_kwds
        self.override_conditional_write = override_conditional_write
        if codeobj_class is None:
            codeobj_class = group.codeobj_class
        self.codeobj_class = codeobj_class
        self.generate_empty_code = generate_empty_code
        self.codeobj = None

    def __getstate__(self):
        state = self.__dict__.copy()
        state["group"] = state["group"].__repr__.__self__
        return state

    def __setstate__(self, state):
        state["group"] = weakproxy_with_fallback(state["group"])
        self.__dict__ = state

    def update_abstract_code(self, run_namespace):
        """
        Update the abstract code for the code object. Will be called in
        `before_run` and should update the `CodeRunner.abstract_code`
        attribute.

        Does nothing by default.
        """
        pass

    def create_default_code_object(self, run_namespace):
        self.update_abstract_code(run_namespace=run_namespace)
        # If the CodeRunner has variables, add them
        if hasattr(self, "variables"):
            additional_variables = self.variables
        else:
            additional_variables = None

        if not self.generate_empty_code and len(self.abstract_code) == 0:
            self.codeobj = None
        else:
            self.codeobj = create_runner_codeobj(
                group=self.group,
                code=self.abstract_code,
                user_code=self.user_code,
                template_name=self.template,
                name=f"{self.name}_codeobject*",
                check_units=self.check_units,
                additional_variables=additional_variables,
                needed_variables=self.needed_variables,
                run_namespace=run_namespace,
                template_kwds=self.template_kwds,
                override_conditional_write=self.override_conditional_write,
                codeobj_class=self.codeobj_class,
            )
        return self.codeobj

    def create_code_objects(self, run_namespace):
        # By default, we only have one code object for each CodeRunner.
        # Overwrite this function to use more than one.
        code_object = self.create_default_code_object(run_namespace)
        if code_object:
            self.code_objects[:] = [weakref.proxy(code_object)]
        else:
            self.code_objects[:] = []

    def before_run(self, run_namespace):
        self.create_code_objects(run_namespace)
        super().before_run(run_namespace)