1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
"""
Implementation of `TimedArray`.
"""
import numpy as np
from brian2.core.clocks import defaultclock
from brian2.core.functions import Function
from brian2.core.names import Nameable
from brian2.units.allunits import second
from brian2.units.fundamentalunits import (
Quantity,
check_units,
get_dimensions,
get_unit,
)
from brian2.utils.caching import CacheKey
from brian2.utils.logger import get_logger
from brian2.utils.stringtools import replace
__all__ = ["TimedArray"]
logger = get_logger(__name__)
def _find_K(group_dt, dt):
dt_ratio = dt / group_dt
if dt_ratio > 1 and np.floor(dt_ratio) != dt_ratio:
logger.warn(
"Group uses a dt of %s while TimedArray uses dt "
"of %s (ratio: 1/%s) → time grids not aligned"
% (group_dt * second, dt * second, dt_ratio),
once=True,
)
# Find an upsampling factor that should avoid rounding issues even
# for multistep methods
K = max(int(2 ** np.ceil(np.log2(8 / group_dt * dt))), 1)
return K
def _generate_cpp_code_1d(values, dt, name):
def cpp_impl(owner):
K = _find_K(owner.clock.dt_, dt)
code = (
"""
static inline double %NAME%(const double t)
{
const double epsilon = %DT% / %K%;
int i = (int)((t/epsilon + 0.5)/%K%);
if(i < 0)
i = 0;
if(i >= %NUM_VALUES%)
i = %NUM_VALUES%-1;
return _namespace%NAME%_values[i];
}
""".replace(
"%NAME%", name
)
.replace("%DT%", f"{dt:.18f}")
.replace("%K%", str(K))
.replace("%NUM_VALUES%", str(len(values)))
)
return code
return cpp_impl
def _generate_cpp_code_2d(values, dt, name):
def cpp_impl(owner):
K = _find_K(owner.clock.dt_, dt)
support_code = """
static inline double %NAME%(const double t, const int i)
{
const double epsilon = %DT% / %K%;
if (i < 0 || i >= %COLS%)
return NAN;
int timestep = (int)((t/epsilon + 0.5)/%K%);
if(timestep < 0)
timestep = 0;
else if(timestep >= %ROWS%)
timestep = %ROWS%-1;
return _namespace%NAME%_values[timestep*%COLS% + i];
}
"""
code = replace(
support_code,
{
"%NAME%": name,
"%DT%": f"{dt:.18f}",
"%K%": str(K),
"%COLS%": str(values.shape[1]),
"%ROWS%": str(values.shape[0]),
},
)
return code
return cpp_impl
def _generate_cython_code_1d(values, dt, name):
def cython_impl(owner):
K = _find_K(owner.clock.dt_, dt)
code = (
"""
cdef double %NAME%(const double t):
global _namespace%NAME%_values
cdef double epsilon = %DT% / %K%
cdef int i = (int)((t/epsilon + 0.5)/%K%)
if i < 0:
i = 0
if i >= %NUM_VALUES%:
i = %NUM_VALUES% - 1
return _namespace%NAME%_values[i]
""".replace(
"%NAME%", name
)
.replace("%DT%", f"{dt:.18f}")
.replace("%K%", str(K))
.replace("%NUM_VALUES%", str(len(values)))
)
return code
return cython_impl
def _generate_cython_code_2d(values, dt, name):
def cython_impl(owner):
K = _find_K(owner.clock.dt_, dt)
code = """
cdef double %NAME%(const double t, const int i):
global _namespace%NAME%_values
cdef double epsilon = %DT% / %K%
if i < 0 or i >= %COLS%:
return _numpy.nan
cdef int timestep = (int)((t/epsilon + 0.5)/%K%)
if timestep < 0:
timestep = 0
elif timestep >= %ROWS%:
timestep = %ROWS%-1
return _namespace%NAME%_values[timestep*%COLS% + i]
"""
code = replace(
code,
{
"%NAME%": name,
"%DT%": f"{dt:.18f}",
"%K%": str(K),
"%COLS%": str(values.shape[1]),
"%ROWS%": str(values.shape[0]),
},
)
return code
return cython_impl
class TimedArray(Function, Nameable, CacheKey):
"""
TimedArray(values, dt, name=None)
A function of time built from an array of values. The returned object can
be used as a function, including in model equations etc. The resulting
function has to be called as `funcion_name(t)` if the provided value array
is one-dimensional and as `function_name(t, i)` if it is two-dimensional.
Parameters
----------
values : ndarray or `Quantity`
An array of values providing the values at various points in time. This
array can either be one- or two-dimensional. If it is two-dimensional
it's first dimension should be the time.
dt : `Quantity`
The time distance between values in the `values` array.
name : str, optional
A unique name for this object, see `Nameable` for details. Defaults
to ``'_timedarray*'``.
Notes
-----
For time values corresponding to elements outside of the range of `values`
provided, the first respectively last element is returned.
Examples
--------
>>> from brian2 import *
>>> ta = TimedArray([1, 2, 3, 4] * mV, dt=0.1*ms)
>>> print(ta(0.3*ms))
4. mV
>>> G = NeuronGroup(1, 'v = ta(t) : volt')
>>> mon = StateMonitor(G, 'v', record=True)
>>> net = Network(G, mon)
>>> net.run(1*ms) # doctest: +ELLIPSIS
...
>>> print(mon[0].v)
[ 1. 2. 3. 4. 4. 4. 4. 4. 4. 4.] mV
>>> ta2d = TimedArray([[1, 2], [3, 4], [5, 6]]*mV, dt=0.1*ms)
>>> G = NeuronGroup(4, 'v = ta2d(t, i%2) : volt')
>>> mon = StateMonitor(G, 'v', record=True)
>>> net = Network(G, mon)
>>> net.run(0.2*ms) # doctest: +ELLIPSIS
...
>>> print(mon.v[:])
[[ 1. 3.]
[ 2. 4.]
[ 1. 3.]
[ 2. 4.]] mV
"""
_cache_irrelevant_attributes = {"_id", "values", "pyfunc", "implementations"}
#: Container for implementing functions for different targets
#: This container can be extended by other codegeneration targets/devices
#: The key has to be the name of the target, the value is a tuple of
#: functions, the first for a 1d array, the second for a 2d array.
#: The functions have to take three parameters: (values, dt, name), i.e. the
#: array values, their physical dimensions, the dt of the TimedArray, and
#: the name of the TimedArray. The functions have to return *a function*
#: that takes the `owner` argument (out of which they can get the context's
#: dt as `owner.clock.dt_`) and returns the code.
implementations = {
"cpp": (_generate_cpp_code_1d, _generate_cpp_code_2d),
"cython": (_generate_cython_code_1d, _generate_cython_code_2d),
}
@check_units(dt=second)
def __init__(self, values, dt, name=None):
if name is None:
name = "_timedarray*"
Nameable.__init__(self, name)
dimensions = get_dimensions(values)
self.dim = dimensions
values = np.asarray(values, dtype=np.float64)
self.values = values
dt = float(dt)
self.dt = dt
if values.ndim == 1:
self._init_1d()
elif values.ndim == 2:
self._init_2d()
else:
raise NotImplementedError(
"Only 1d and 2d arrays are supported for TimedArray"
)
def _init_1d(self):
dimensions = self.dim
unit = get_unit(dimensions)
values = self.values
dt = self.dt
# Python implementation (with units), used when calling the TimedArray
# directly, outside of a simulation
@check_units(t=second, result=unit)
def timed_array_func(t):
# We round according to the current defaultclock.dt
K = _find_K(float(defaultclock.dt), dt)
epsilon = dt / K
i = np.clip(
np.int_(np.round(np.asarray(t / epsilon)) / K), 0, len(values) - 1
)
return Quantity(values[i], dim=dimensions)
Function.__init__(self, pyfunc=timed_array_func)
# we use dynamic implementations because we want to do upsampling
# in a way that avoids rounding problems with the group's dt
def create_numpy_implementation(owner):
group_dt = owner.clock.dt_
K = _find_K(group_dt, dt)
n_values = len(values)
epsilon = dt / K
def unitless_timed_array_func(t):
timestep = np.clip(np.int_(np.round(t / epsilon) / K), 0, n_values - 1)
return values[timestep]
unitless_timed_array_func._arg_units = [second]
unitless_timed_array_func._return_unit = unit
return unitless_timed_array_func
self.implementations.add_dynamic_implementation(
"numpy", create_numpy_implementation
)
namespace = lambda owner: {f"{self.name}_values": self.values}
for target, (func_1d, _) in TimedArray.implementations.items():
self.implementations.add_dynamic_implementation(
target,
func_1d(self.values, self.dt, self.name),
namespace=namespace,
name=self.name,
)
def _init_2d(self):
dimensions = self.dim
unit = get_unit(dimensions)
values = self.values
dt = self.dt
# Python implementation (with units), used when calling the TimedArray
# directly, outside of a simulation
@check_units(i=1, t=second, result=unit)
def timed_array_func(t, i):
# We round according to the current defaultclock.dt
K = _find_K(float(defaultclock.dt), dt)
epsilon = dt / K
time_step = np.clip(
np.int_(np.round(np.asarray(t / epsilon)) / K), 0, len(values) - 1
)
return Quantity(values[time_step, i], dim=dimensions)
Function.__init__(self, pyfunc=timed_array_func)
# we use dynamic implementations because we want to do upsampling
# in a way that avoids rounding problems with the group's dt
def create_numpy_implementation(owner):
group_dt = owner.clock.dt_
K = _find_K(group_dt, dt)
n_values = len(values)
epsilon = dt / K
def unitless_timed_array_func(t, i):
timestep = np.clip(np.int_(np.round(t / epsilon) / K), 0, n_values - 1)
return values[timestep, i]
unitless_timed_array_func._arg_units = [second]
unitless_timed_array_func._return_unit = unit
return unitless_timed_array_func
self.implementations.add_dynamic_implementation(
"numpy", create_numpy_implementation
)
values_flat = self.values.astype(np.double, order="C", copy=False).ravel()
namespace = lambda owner: {f"{self.name}_values": values_flat}
for target, (_, func_2d) in TimedArray.implementations.items():
self.implementations.add_dynamic_implementation(
target,
func_2d(self.values, self.dt, self.name),
namespace=namespace,
name=self.name,
)
def is_locally_constant(self, dt):
if dt > self.dt:
return False
dt_ratio = self.dt / float(dt)
if np.floor(dt_ratio) != dt_ratio:
logger.info(
"dt of the TimedArray is not an integer multiple of "
"the group's dt, the TimedArray's return value can "
"therefore not be considered constant over one "
"timestep, making exact integration impossible.",
once=True,
)
return False
return True
|