1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
|
"""
Module defining `EventMonitor` and `SpikeMonitor`.
"""
import numpy as np
from brian2.core.names import Nameable
from brian2.core.spikesource import SpikeSource
from brian2.core.variables import Variables
from brian2.groups.group import CodeRunner, Group
from brian2.units.fundamentalunits import Quantity
__all__ = ["EventMonitor", "SpikeMonitor"]
class EventMonitor(Group, CodeRunner):
"""
Record events from a `NeuronGroup` or another event source.
The recorded events can be accessed in various ways:
the attributes `~EventMonitor.i` and `~EventMonitor.t` store all the indices
and event times, respectively. Alternatively, you can get a dictionary
mapping neuron indices to event trains, by calling the `event_trains`
method.
Parameters
----------
source : `NeuronGroup`, `SpikeSource`
The source of events to record.
event : str
The name of the event to record
variables : str or sequence of str, optional
Which variables to record at the time of the event (in addition to the
index of the neuron). Can be the name of a variable or a list of names.
record : bool, optional
Whether or not to record each event in `i` and `t` (the `count` will
always be recorded). Defaults to ``True``.
when : str, optional
When to record the events, by default records events in the same slot
where the event is emitted. See :ref:`scheduling` for possible values.
order : int, optional
The priority of of this group for operations occurring at the same time
step and in the same scheduling slot. Defaults to the order where the
event is emitted + 1, i.e. it will be recorded directly afterwards.
name : str, optional
A unique name for the object, otherwise will use
``source.name+'_eventmonitor_0'``, etc.
codeobj_class : class, optional
The `CodeObject` class to run code with.
See Also
--------
SpikeMonitor
"""
invalidates_magic_network = False
add_to_magic_network = True
def __init__(
self,
source,
event,
variables=None,
record=True,
when=None,
order=None,
name="eventmonitor*",
codeobj_class=None,
):
if not isinstance(source, SpikeSource):
raise TypeError(
f"{self.__class__.__name__} can only monitor groups "
"producing spikes (such as NeuronGroup), but the given "
f"argument is of type {type(source)}."
)
#: The source we are recording from
self.source = source
#: Whether to record times and indices of events
self.record = record
#: The array of event counts (length = size of target group)
self.count = None
del self.count # this is handled by the Variable mechanism
if event not in source.events:
if event == "spike":
threshold_text = " Did you forget to set a 'threshold'?"
else:
threshold_text = ""
raise ValueError(
f"Recorded group '{source.name}' does not define an event "
f"'{event}'.{threshold_text}"
)
if when is None:
if order is not None:
raise ValueError("Cannot specify order if when is not specified.")
# TODO: Would be nicer if there was a common way of accessing the
# relevant object for NeuronGroup and SpikeGeneratorGroup
if hasattr(source, "thresholder"):
parent_obj = source.thresholder[event]
else:
parent_obj = source
when = parent_obj.when
order = parent_obj.order + 1
elif order is None:
order = 0
#: The event that we are listening to
self.event = event
if variables is None:
variables = {}
elif isinstance(variables, str):
variables = {variables}
#: The additional variables that will be recorded
self.record_variables = set(variables)
for variable in variables:
if variable not in source.variables:
raise ValueError(
f"'{variable}' is not a variable of the recorded group"
)
if self.record:
self.record_variables |= {"i", "t"}
# Some dummy code so that code generation takes care of the indexing
# and subexpressions
code = [f"_to_record_{v} = _source_{v}" for v in sorted(self.record_variables)]
code = "\n".join(code)
self.codeobj_class = codeobj_class
# Since this now works for general events not only spikes, we have to
# pass the information about which variable to use to the template,
# it can not longer simply refer to "_spikespace"
eventspace_name = f"_{event}space"
# Handle subgroups correctly
start = getattr(source, "start", 0)
stop = getattr(source, "stop", len(source))
source_N = getattr(source, "_source_N", len(source))
Nameable.__init__(self, name=name)
self.variables = Variables(self)
self.variables.add_reference(eventspace_name, source)
for variable in self.record_variables:
source_var = source.variables[variable]
self.variables.add_reference(f"_source_{variable}", source, variable)
self.variables.add_auxiliary_variable(
f"_to_record_{variable}",
dimensions=source_var.dim,
dtype=source_var.dtype,
)
self.variables.add_dynamic_array(
variable,
size=0,
dimensions=source_var.dim,
dtype=source_var.dtype,
read_only=True,
)
self.variables.add_arange("_source_idx", size=len(source))
self.variables.add_array(
"count",
size=len(source),
dtype=np.int32,
read_only=True,
index="_source_idx",
)
self.variables.add_constant("_source_start", start)
self.variables.add_constant("_source_stop", stop)
self.variables.add_constant("_source_N", source_N)
self.variables.add_array(
"N", size=1, dtype=np.int32, read_only=True, scalar=True
)
record_variables = {
varname: self.variables[varname] for varname in self.record_variables
}
template_kwds = {
"eventspace_variable": source.variables[eventspace_name],
"record_variables": record_variables,
"record": self.record,
}
needed_variables = {eventspace_name} | self.record_variables
CodeRunner.__init__(
self,
group=self,
code=code,
template="spikemonitor",
name=None, # The name has already been initialized
clock=source.clock,
when=when,
order=order,
needed_variables=needed_variables,
template_kwds=template_kwds,
)
self.variables.create_clock_variables(self._clock, prefix="_clock_")
self.add_dependency(source)
self.written_readonly_vars = {
self.variables[varname] for varname in self.record_variables
}
self._enable_group_attributes()
def resize(self, new_size):
# Note that this does not set N, this has to be done in the template
# since we use a restricted pointer to access it (which promises that
# we only change the value through this pointer)
for variable in self.record_variables:
self.variables[variable].resize(new_size)
def reinit(self):
"""
Clears all recorded spikes
"""
raise NotImplementedError()
@property
def it(self):
"""
Returns the pair (`i`, `t`).
"""
if not self.record:
raise AttributeError(
"Indices and times have not been recorded."
"Set the record argument to True to record "
"them."
)
return self.i, self.t
@property
def it_(self):
"""
Returns the pair (`i`, `t_`).
"""
if not self.record:
raise AttributeError(
"Indices and times have not been recorded."
"Set the record argument to True to record "
"them."
)
return self.i, self.t_
def _values_dict(self, first_pos, sort_indices, used_indices, var):
sorted_values = self.state(var, use_units=False)[sort_indices]
dim = self.variables[var].dim
event_values = {}
current_pos = 0 # position in the all_indices array
for idx in range(len(self.source)):
if current_pos < len(used_indices) and used_indices[current_pos] == idx:
if current_pos < len(used_indices) - 1:
event_values[idx] = Quantity(
sorted_values[
first_pos[current_pos] : first_pos[current_pos + 1]
],
dim=dim,
)
else:
event_values[idx] = Quantity(
sorted_values[first_pos[current_pos] :], dim=dim
)
current_pos += 1
else:
event_values[idx] = Quantity([], dim=dim)
return event_values
def values(self, var):
"""
Return a dictionary mapping neuron indices to arrays of variable values
at the time of the events (sorted by time).
Parameters
----------
var : str
The name of the variable.
Returns
-------
values : dict
Dictionary mapping each neuron index to an array of variable
values at the time of the events
Examples
--------
>>> from brian2 import *
>>> G = NeuronGroup(2, '''counter1 : integer
... counter2 : integer
... max_value : integer''',
... threshold='counter1 >= max_value',
... reset='counter1 = 0')
>>> G.run_regularly('counter1 += 1; counter2 += 1') # doctest: +ELLIPSIS
CodeRunner(...)
>>> G.max_value = [50, 100]
>>> mon = EventMonitor(G, event='spike', variables='counter2')
>>> run(10*ms)
>>> counter2_values = mon.values('counter2')
>>> print(counter2_values[0])
[ 50 100]
>>> print(counter2_values[1])
[100]
"""
if not self.record:
raise AttributeError(
"Indices and times have not been recorded."
"Set the record argument to True to record "
"them."
)
indices = self.i[:]
# We have to make sure that the sort is stable, otherwise our spike
# times do not necessarily remain sorted.
sort_indices = np.argsort(indices, kind="mergesort")
used_indices, first_pos = np.unique(self.i[:][sort_indices], return_index=True)
return self._values_dict(first_pos, sort_indices, used_indices, var)
def all_values(self):
"""
Return a dictionary mapping recorded variable names (including ``t``)
to a dictionary mapping neuron indices to arrays of variable values at
the time of the events (sorted by time). This is equivalent to (but more
efficient than) calling `values` for each variable and storing the
result in a dictionary.
Returns
-------
all_values : dict
Dictionary mapping variable names to dictionaries which themselves
are mapping neuron indicies to arrays of variable values at the
time of the events.
Examples
--------
>>> from brian2 import *
>>> G = NeuronGroup(2, '''counter1 : integer
... counter2 : integer
... max_value : integer''',
... threshold='counter1 >= max_value',
... reset='counter1 = 0')
>>> G.run_regularly('counter1 += 1; counter2 += 1') # doctest: +ELLIPSIS
CodeRunner(...)
>>> G.max_value = [50, 100]
>>> mon = EventMonitor(G, event='spike', variables='counter2')
>>> run(10*ms)
>>> all_values = mon.all_values()
>>> print(all_values['counter2'][0])
[ 50 100]
>>> print(all_values['t'][1])
[ 9.9] ms
"""
if not self.record:
raise AttributeError(
"Indices and times have not been recorded."
"Set the record argument to True to record "
"them."
)
indices = self.i[:]
sort_indices = np.argsort(indices, kind="mergesort")
used_indices, first_pos = np.unique(self.i[:][sort_indices], return_index=True)
all_values_dict = {}
for varname in self.record_variables - {"i"}:
all_values_dict[varname] = self._values_dict(
first_pos, sort_indices, used_indices, varname
)
return all_values_dict
def event_trains(self):
"""
Return a dictionary mapping neuron indices to arrays of event times.
Equivalent to calling ``values('t')``.
Returns
-------
event_trains : dict
Dictionary that stores an array with the event times for each
neuron index.
See Also
--------
SpikeMonitor.spike_trains
"""
return self.values("t")
@property
def num_events(self):
"""
Returns the total number of recorded events.
"""
return self.N[:]
def __repr__(self):
classname = self.__class__.__name__
return f"<{classname}, recording event '{self.event}' from '{self.group.name}'>"
class SpikeMonitor(EventMonitor):
"""
Record spikes from a `NeuronGroup` or other spike source.
The recorded spikes can be accessed in various ways (see Examples below):
the attributes `~SpikeMonitor.i` and `~SpikeMonitor.t` store all the indices
and spike times, respectively. Alternatively, you can get a dictionary
mapping neuron indices to spike trains, by calling the `spike_trains`
method. If you record additional variables with the ``variables`` argument,
these variables can be accessed by their name (see Examples).
Parameters
----------
source : (`NeuronGroup`, `SpikeSource`)
The source of spikes to record.
variables : str or sequence of str, optional
Which variables to record at the time of the spike (in addition to the
index of the neuron). Can be the name of a variable or a list of names.
record : bool, optional
Whether or not to record each spike in `i` and `t` (the `count` will
always be recorded). Defaults to ``True``.
when : str, optional
When to record the events, by default records events in the same slot
where the event is emitted. See :ref:`scheduling` for possible values.
order : int, optional
The priority of of this group for operations occurring at the same time
step and in the same scheduling slot. Defaults to the order where the
event is emitted + 1, i.e. it will be recorded directly afterwards.
name : str, optional
A unique name for the object, otherwise will use
``source.name+'_spikemonitor_0'``, etc.
codeobj_class : class, optional
The `CodeObject` class to run code with.
Examples
--------
>>> from brian2 import *
>>> spikes = SpikeGeneratorGroup(3, [0, 1, 2], [0, 1, 2]*ms)
>>> spike_mon = SpikeMonitor(spikes)
>>> net = Network(spikes, spike_mon)
>>> net.run(3*ms)
>>> print(spike_mon.i[:])
[0 1 2]
>>> print(spike_mon.t[:])
[ 0. 1. 2.] ms
>>> print(spike_mon.t_[:])
[ 0. 0.001 0.002]
>>> from brian2 import *
>>> G = NeuronGroup(2, '''counter1 : integer
... counter2 : integer
... max_value : integer''',
... threshold='counter1 >= max_value',
... reset='counter1 = 0')
>>> G.run_regularly('counter1 += 1; counter2 += 1') # doctest: +ELLIPSIS
CodeRunner(...)
>>> G.max_value = [50, 100]
>>> mon = SpikeMonitor(G, variables='counter2')
>>> net = Network(G, mon)
>>> net.run(10*ms)
>>> print(mon.i[:])
[0 0 1]
>>> print(mon.counter2[:])
[ 50 100 100]
"""
def __init__(
self,
source,
variables=None,
record=True,
when=None,
order=None,
name="spikemonitor*",
codeobj_class=None,
):
#: The array of spike counts (length = size of target group)
self.count = None
del self.count # this is handled by the Variable mechanism
super().__init__(
source,
event="spike",
variables=variables,
record=record,
when=when,
order=order,
name=name,
codeobj_class=codeobj_class,
)
@property
def num_spikes(self):
"""
Returns the total number of recorded spikes.
"""
return self.num_events
# We "re-implement" the following functions only to get more specific
# doc strings (and to make sure that the methods are included in the
# reference documentation for SpikeMonitor).
def spike_trains(self):
"""
Return a dictionary mapping neuron indices to arrays of spike times.
Returns
-------
spike_trains : dict
Dictionary that stores an array with the spike times for each
neuron index.
Examples
--------
>>> from brian2 import *
>>> spikes = SpikeGeneratorGroup(3, [0, 1, 2], [0, 1, 2]*ms)
>>> spike_mon = SpikeMonitor(spikes)
>>> run(3*ms)
>>> spike_trains = spike_mon.spike_trains()
>>> spike_trains[1]
array([ 1.]) * msecond
"""
return self.event_trains()
def values(self, var):
"""
Return a dictionary mapping neuron indices to arrays of variable values
at the time of the spikes (sorted by time).
Parameters
----------
var : str
The name of the variable.
Returns
-------
values : dict
Dictionary mapping each neuron index to an array of variable
values at the time of the spikes.
Examples
--------
>>> from brian2 import *
>>> G = NeuronGroup(2, '''counter1 : integer
... counter2 : integer
... max_value : integer''',
... threshold='counter1 >= max_value',
... reset='counter1 = 0')
>>> G.run_regularly('counter1 += 1; counter2 += 1') # doctest: +ELLIPSIS
CodeRunner(...)
>>> G.max_value = [50, 100]
>>> mon = SpikeMonitor(G, variables='counter2')
>>> run(10*ms)
>>> counter2_values = mon.values('counter2')
>>> print(counter2_values[0])
[ 50 100]
>>> print(counter2_values[1])
[100]
"""
return super().values(var)
def all_values(self):
"""
Return a dictionary mapping recorded variable names (including ``t``)
to a dictionary mapping neuron indices to arrays of variable values at
the time of the spikes (sorted by time). This is equivalent to (but more
efficient than) calling `values` for each variable and storing the
result in a dictionary.
Returns
-------
all_values : dict
Dictionary mapping variable names to dictionaries which themselves
are mapping neuron indicies to arrays of variable values at the
time of the spikes.
Examples
--------
>>> from brian2 import *
>>> G = NeuronGroup(2, '''counter1 : integer
... counter2 : integer
... max_value : integer''',
... threshold='counter1 >= max_value',
... reset='counter1 = 0')
>>> G.run_regularly('counter1 += 1; counter2 += 1') # doctest: +ELLIPSIS
CodeRunner(...)
>>> G.max_value = [50, 100]
>>> mon = SpikeMonitor(G, variables='counter2')
>>> run(10*ms)
>>> all_values = mon.all_values()
>>> print(all_values['counter2'][0])
[ 50 100]
>>> print(all_values['t'][1])
[ 9.9] ms
"""
return super().all_values()
def __repr__(self):
classname = self.__class__.__name__
return f"<{classname}, recording from '{self.group.name}'>"
|