File: bast.py

package info (click to toggle)
brian 2.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,872 kB
  • sloc: python: 51,820; cpp: 2,033; makefile: 108; sh: 72
file content (292 lines) | stat: -rw-r--r-- 10,338 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
"""
Brian AST representation

This is a standard Python AST representation with additional information added.
"""

import ast
import weakref

import numpy

from brian2.utils.logger import get_logger

__all__ = ["brian_ast", "BrianASTRenderer", "dtype_hierarchy"]


logger = get_logger(__name__)

# This codifies the idea that operations involving e.g. boolean and integer will end up
# as integer. In general the output type will be the max of the hierarchy values here.
dtype_hierarchy = {
    "boolean": 0,
    "integer": 1,
    "float": 2,
}
# This is just so you can invert from number to string
for tc, i in dict(dtype_hierarchy).items():
    dtype_hierarchy[i] = tc


def is_boolean(value):
    return isinstance(value, bool)


def is_integer(value):
    return isinstance(value, (int, numpy.integer))


def is_float(value):
    return isinstance(value, (float, numpy.float32, numpy.float64))


def brian_dtype_from_value(value):
    """
    Returns 'boolean', 'integer' or 'float'
    """
    if is_float(value):
        return "float"
    elif is_integer(value):
        return "integer"
    elif is_boolean(value):
        return "boolean"
    raise TypeError(f"Unknown dtype for value {str(value)}")


# The following functions are called very often during the optimisation process
# so we don't use numpy.issubdtype but instead a precalculated list of all
# standard types

bool_dtype = numpy.dtype(bool)


def is_boolean_dtype(obj):
    return numpy.dtype(obj) is bool_dtype


integer_dtypes = {numpy.dtype(c) for c in numpy.typecodes["AllInteger"]}


def is_integer_dtype(obj):
    return numpy.dtype(obj) in integer_dtypes


float_dtypes = {numpy.dtype(c) for c in numpy.typecodes["AllFloat"]}


def is_float_dtype(obj):
    return numpy.dtype(obj) in float_dtypes


def brian_dtype_from_dtype(dtype):
    """
    Returns 'boolean', 'integer' or 'float'
    """
    if is_float_dtype(dtype):
        return "float"
    elif is_integer_dtype(dtype):
        return "integer"
    elif is_boolean_dtype(dtype):
        return "boolean"
    raise TypeError(f"Unknown dtype: {str(dtype)}")


def brian_ast(expr, variables):
    """
    Returns an AST tree representation with additional information

    Each node will be a standard Python ``ast`` node with the
    following additional attributes:

    ``dtype``
        One of ``'boolean'``, ``'integer'`` or ``'float'``, referring to the data type
        of the value of this node.
    ``scalar``
        Either ``True`` or ``False`` if the node uses any vector-valued variables.
    ``complexity``
        An integer representation of the computational complexity of the node. This
        is a very rough representation used for things like ``2*(x+y)`` is less
        complex than ``2*x+2*y`` and ``exp(x)`` is more complex than ``2*x`` but
        shouldn't be relied on for fine distinctions between expressions.

    Parameters
    ----------
    expr : str
        The expression to convert into an AST representation
    variables : dict
        The dictionary of `Variable` objects used in the expression.
    """
    node = ast.parse(expr, mode="eval").body
    renderer = BrianASTRenderer(variables)
    return renderer.render_node(node)


class BrianASTRenderer:
    """
    This class is modelled after `NodeRenderer` - see there for details.
    """

    def __init__(self, variables, copy_variables=True):
        if copy_variables:
            self.variables = variables.copy()
        else:
            self.variables = variables

    def render_node(self, node):
        nodename = node.__class__.__name__
        methname = f"render_{nodename}"
        try:
            return getattr(self, methname)(node)
        except AttributeError:
            raise SyntaxError(f"Unknown syntax: {nodename}")

    def render_NameConstant(self, node):
        if node.value is not True and node.value is not False:
            raise SyntaxError(f"Unknown NameConstant {str(node.value)}")
        # NameConstant only used for True and False and None, and we don't support None
        node.dtype = "boolean"
        node.scalar = True
        node.complexity = 0
        node.stateless = True
        return node

    def render_Name(self, node):
        node.complexity = 0
        if node.id == "True" or node.id == "False":
            node.dtype = "boolean"
            node.scalar = True
        elif node.id in self.variables:
            var = self.variables[node.id]
            dtype = var.dtype
            node.dtype = brian_dtype_from_dtype(dtype)
            node.scalar = var.scalar
        else:  # don't think we need to handle other names (pi, e, inf)?
            node.dtype = "float"
            node.scalar = True  # I think this assumption is OK, but not certain
        node.stateless = True
        return node

    def render_Num(self, node):
        node.complexity = 0
        node.dtype = brian_dtype_from_value(node.value)
        node.scalar = True
        node.stateless = True
        return node

    def render_Constant(self, node):  # For literals in Python >= 3.8
        if node.value is True or node.value is False or node.value is None:
            return self.render_NameConstant(node)
        else:
            return self.render_Num(node)

    def render_Call(self, node):
        if len(node.keywords):
            raise ValueError("Keyword arguments not supported.")
        elif getattr(node, "starargs", None) is not None:
            raise ValueError("Variable number of arguments not supported")
        elif getattr(node, "kwargs", None) is not None:
            raise ValueError("Keyword arguments not supported")
        args = []
        for subnode in node.args:
            subnode.parent = weakref.proxy(node)
            subnode = self.render_node(subnode)
            args.append(subnode)
        node.args = args
        node.dtype = "float"  # default dtype
        # Condition for scalarity of function call: stateless and arguments are scalar
        node.scalar = False
        if node.func.id in self.variables:
            funcvar = self.variables[node.func.id]
            # sometimes this attribute doesn't exist, if so assume it's not stateless
            node.stateless = getattr(funcvar, "stateless", False)
            node.auto_vectorise = getattr(funcvar, "auto_vectorise", False)
            if node.stateless and not node.auto_vectorise:
                node.scalar = all(subnode.scalar for subnode in node.args)
            # check that argument types are valid
            node_arg_types = [subnode.dtype for subnode in node.args]
            for subnode, argtype in zip(node.args, funcvar._arg_types):
                if argtype != "any" and argtype != subnode.dtype:
                    raise TypeError(
                        f"Function '{node.func.id}' takes arguments with "
                        f"types {funcvar._arg_types} but "
                        f"received {node_arg_types}."
                    )
            # compute return type
            return_type = funcvar._return_type
            if return_type == "highest":
                return_type = dtype_hierarchy[
                    max(dtype_hierarchy[nat] for nat in node_arg_types)
                ]
            node.dtype = return_type
        else:
            node.stateless = False
        # we leave node.func because it is an ast.Name object that doesn't have a dtype
        # TODO: variable complexity for function calls?
        node.complexity = 20 + sum(subnode.complexity for subnode in node.args)
        return node

    def render_BinOp(self, node):
        node.left.parent = weakref.proxy(node)
        node.right.parent = weakref.proxy(node)
        node.left = self.render_node(node.left)
        node.right = self.render_node(node.right)
        # TODO: we could capture some syntax errors here, e.g. bool+bool
        # captures, e.g. int+float->float
        newdtype = dtype_hierarchy[
            max(dtype_hierarchy[subnode.dtype] for subnode in [node.left, node.right])
        ]
        if node.op.__class__.__name__ == "Div":
            # Division turns integers into floating point values
            newdtype = "float"
        node.dtype = newdtype
        node.scalar = node.left.scalar and node.right.scalar
        node.complexity = 1 + node.left.complexity + node.right.complexity
        node.stateless = node.left.stateless and node.right.stateless
        return node

    def render_BoolOp(self, node):
        values = []
        for subnode in node.values:
            subnode.parent = node
            subnode = self.render_node(subnode)
            values.append(subnode)
        node.values = values
        node.dtype = "boolean"
        for subnode in node.values:
            if subnode.dtype != "boolean":
                raise TypeError("Boolean operator acting on non-booleans")
        node.scalar = all(subnode.scalar for subnode in node.values)
        node.complexity = 1 + sum(subnode.complexity for subnode in node.values)
        node.stateless = all(subnode.stateless for subnode in node.values)
        return node

    def render_Compare(self, node):
        node.left = self.render_node(node.left)
        comparators = []
        for subnode in node.comparators:
            subnode.parent = node
            subnode = self.render_node(subnode)
            comparators.append(subnode)
        node.comparators = comparators
        node.dtype = "boolean"
        comparators = [node.left] + node.comparators
        node.scalar = all(subnode.scalar for subnode in comparators)
        node.complexity = 1 + sum(subnode.complexity for subnode in comparators)
        node.stateless = node.left.stateless and all(
            c.stateless for c in node.comparators
        )
        return node

    def render_UnaryOp(self, node):
        node.operand.parent = node
        node.operand = self.render_node(node.operand)
        node.dtype = node.operand.dtype
        if node.dtype == "boolean" and node.op.__class__.__name__ != "Not":
            raise TypeError(
                f"Unary operator {node.op.__class__.__name__} does not apply to boolean"
                " types"
            )
        node.scalar = node.operand.scalar
        node.complexity = 1 + node.operand.complexity
        node.stateless = node.operand.stateless
        return node