1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
import ast
import numbers
import numpy as np
import sympy
from brian2.core.functions import DEFAULT_CONSTANTS, DEFAULT_FUNCTIONS
__all__ = [
"NodeRenderer",
"NumpyNodeRenderer",
"CPPNodeRenderer",
"SympyNodeRenderer",
]
class NodeRenderer:
expression_ops = {
# BinOp
"Add": "+",
"Sub": "-",
"Mult": "*",
"Div": "/",
"FloorDiv": "//",
"Pow": "**",
"Mod": "%",
# Compare
"Lt": "<",
"LtE": "<=",
"Gt": ">",
"GtE": ">=",
"Eq": "==",
"NotEq": "!=",
# Unary ops
"Not": "not",
"UAdd": "+",
"USub": "-",
# Bool ops
"And": "and",
"Or": "or",
# Augmented assign
"AugAdd": "+=",
"AugSub": "-=",
"AugMult": "*=",
"AugDiv": "/=",
"AugPow": "**=",
"AugMod": "%=",
}
def __init__(self, auto_vectorise=None):
if auto_vectorise is None:
auto_vectorise = set()
self.auto_vectorise = auto_vectorise
def render_expr(self, expr, strip=True):
if strip:
expr = expr.strip()
node = ast.parse(expr, mode="eval")
return self.render_node(node.body)
def render_node(self, node):
nodename = node.__class__.__name__
methname = f"render_{nodename}"
try:
return getattr(self, methname)(node)
except AttributeError:
if nodename == "Subscript":
raise SyntaxError(
"Brian equations/expressions do not support indexing with '[...]'."
)
elif nodename == "Attribute":
raise SyntaxError(
"Brian equations/expressions do not support accessing attributes"
" with the '.' syntax."
)
elif nodename == "Tuple":
raise SyntaxError("Brian equations/expressions do not support tuples.")
else:
raise SyntaxError(
f"Brian equations/expressions do not support the '{nodename}'"
" syntax."
)
def render_func(self, node):
return self.render_Name(node)
def render_Name(self, node):
return node.id
def render_Constant(self, node):
if isinstance(node.value, np.number):
# repr prints the dtype in numpy 2.0
return repr(node.value.item())
return repr(node.value)
def render_Call(self, node):
if len(node.keywords):
raise ValueError("Keyword arguments not supported.")
elif getattr(node, "starargs", None) is not None:
raise ValueError("Variable number of arguments not supported")
elif getattr(node, "kwargs", None) is not None:
raise ValueError("Keyword arguments not supported")
else:
if node.func.id in self.auto_vectorise:
vectorisation_idx = ast.Name("_vectorisation_idx")
args = node.args + [vectorisation_idx]
else:
args = node.args
return f"{self.render_func(node.func)}({', '.join(self.render_node(arg) for arg in args)})"
def render_element_parentheses(self, node):
"""
Render an element with parentheses around it or leave them away for
numbers, names and function calls.
"""
if node.__class__.__name__ == "Name":
return self.render_node(node)
elif node.__class__.__name__ in ["Num", "Constant"] and node.value >= 0:
return self.render_node(node)
elif node.__class__.__name__ == "Call":
return self.render_node(node)
else:
return f"({self.render_node(node)})"
def render_BinOp_parentheses(self, left, right, op):
# Use a simplified checking whether it is possible to omit parentheses:
# only omit parentheses for numbers, variable names or function calls.
# This means we still put needless parentheses because we ignore
# precedence rules, e.g. we write "3 + (4 * 5)" but at least we do
# not do "(3) + ((4) + (5))"
op_class = op.__class__.__name__
# Give a more useful error message when using bit-wise operators
if op_class in ["BitXor", "BitAnd", "BitOr"]:
correction = {
"BitXor": ("^", "**"),
"BitAnd": ("&", "and"),
"BitOr": ("|", "or"),
}.get(op_class)
raise SyntaxError(
f'The operator "{correction[0]}" is not supported, use'
f' "{correction[1]}" instead.'
)
return (
f"{self.render_element_parentheses(left)} "
f"{self.expression_ops[op_class]} "
f"{self.render_element_parentheses(right)}"
)
def render_BinOp(self, node):
return self.render_BinOp_parentheses(node.left, node.right, node.op)
def render_BoolOp(self, node):
op = self.expression_ops[node.op.__class__.__name__]
return (f" {op} ").join(
f"{self.render_element_parentheses(v)}" for v in node.values
)
def render_Compare(self, node):
if len(node.comparators) > 1:
raise SyntaxError("Can only handle single comparisons like a<b not a<b<c")
return self.render_BinOp_parentheses(
node.left, node.comparators[0], node.ops[0]
)
def render_UnaryOp(self, node):
return f"{self.expression_ops[node.op.__class__.__name__]} {self.render_element_parentheses(node.operand)}"
def render_Assign(self, node):
if len(node.targets) > 1:
raise SyntaxError("Only support syntax like a=b not a=b=c")
return f"{self.render_node(node.targets[0])} = {self.render_node(node.value)}"
def render_AugAssign(self, node):
target = node.target.id
rhs = self.render_node(node.value)
op = self.expression_ops[f"Aug{node.op.__class__.__name__}"]
return f"{target} {op} {rhs}"
class NumpyNodeRenderer(NodeRenderer):
expression_ops = NodeRenderer.expression_ops.copy()
expression_ops.update(
{
# Unary ops
# We'll handle "not" explicitly below
# Bool ops
"And": "&",
"Or": "|",
}
)
def render_UnaryOp(self, node):
if node.op.__class__.__name__ == "Not":
return f"logical_not({self.render_node(node.operand)})"
else:
return NodeRenderer.render_UnaryOp(self, node)
class SympyNodeRenderer(NodeRenderer):
expression_ops = {
"Add": sympy.Add,
"Mult": sympy.Mul,
"Pow": sympy.Pow,
"Mod": sympy.Mod,
# Compare
"Lt": sympy.StrictLessThan,
"LtE": sympy.LessThan,
"Gt": sympy.StrictGreaterThan,
"GtE": sympy.GreaterThan,
"Eq": sympy.Eq,
"NotEq": sympy.Ne,
# Unary ops are handled manually
# Bool ops
"And": sympy.And,
"Or": sympy.Or,
}
def render_func(self, node):
if node.id in DEFAULT_FUNCTIONS:
f = DEFAULT_FUNCTIONS[node.id]
if f.sympy_func is not None and isinstance(
f.sympy_func, sympy.FunctionClass
):
return f.sympy_func
# special workaround for the "int" function
if node.id == "int":
return sympy.Function("int_")
else:
return sympy.Function(node.id)
def render_Call(self, node):
if len(node.keywords):
raise ValueError("Keyword arguments not supported.")
elif getattr(node, "starargs", None) is not None:
raise ValueError("Variable number of arguments not supported")
elif getattr(node, "kwargs", None) is not None:
raise ValueError("Keyword arguments not supported")
elif len(node.args) == 0:
return self.render_func(node.func)(sympy.Symbol("_placeholder_arg"))
else:
return self.render_func(node.func)(
*(self.render_node(arg) for arg in node.args)
)
def render_Compare(self, node):
if len(node.comparators) > 1:
raise SyntaxError("Can only handle single comparisons like a<b not a<b<c")
op = node.ops[0]
return self.expression_ops[op.__class__.__name__](
self.render_node(node.left), self.render_node(node.comparators[0])
)
def render_Name(self, node):
if node.id in DEFAULT_CONSTANTS:
c = DEFAULT_CONSTANTS[node.id]
return c.sympy_obj
elif node.id in ["t", "dt"]:
return sympy.Symbol(node.id, real=True, positive=True)
else:
return sympy.Symbol(node.id, real=True)
def render_Constant(self, node):
if node.value is True or node.value is False:
return node.value
elif isinstance(node.value, numbers.Integral):
return sympy.Integer(node.value)
elif isinstance(node.value, numbers.Number):
return sympy.Float(node.value)
else:
return str(node.value)
def render_BinOp(self, node):
op_name = node.op.__class__.__name__
# Sympy implements division and subtraction as multiplication/addition
if op_name == "Div":
op = self.expression_ops["Mult"]
return op(self.render_node(node.left), 1 / self.render_node(node.right))
elif op_name == "FloorDiv":
op = self.expression_ops["Mult"]
left = self.render_node(node.left)
right = self.render_node(node.right)
return sympy.floor(op(left, 1 / right))
elif op_name == "Sub":
op = self.expression_ops["Add"]
return op(self.render_node(node.left), -self.render_node(node.right))
else:
op = self.expression_ops[op_name]
return op(self.render_node(node.left), self.render_node(node.right))
def render_BoolOp(self, node):
op = self.expression_ops[node.op.__class__.__name__]
return op(*(self.render_node(value) for value in node.values))
def render_UnaryOp(self, node):
op_name = node.op.__class__.__name__
if op_name == "UAdd":
# Nothing to do
return self.render_node(node.operand)
elif op_name == "USub":
return -self.render_node(node.operand)
elif op_name == "Not":
return sympy.Not(self.render_node(node.operand))
else:
raise ValueError(f"Unknown unary operator: {op_name}")
class CPPNodeRenderer(NodeRenderer):
expression_ops = NodeRenderer.expression_ops.copy()
expression_ops.update(
{
# Unary ops
"Not": "!",
# Bool ops
"And": "&&",
"Or": "||",
# C does not have a floor division operator (but see render_BinOp)
"FloorDiv": "/",
}
)
def render_BinOp(self, node):
if node.op.__class__.__name__ == "Pow":
return (
f"_brian_pow({self.render_node(node.left)},"
f" {self.render_node(node.right)})"
)
elif node.op.__class__.__name__ == "Mod":
return (
f"_brian_mod({self.render_node(node.left)},"
f" {self.render_node(node.right)})"
)
elif node.op.__class__.__name__ == "Div":
# C uses integer division, this is a quick and dirty way to assure
# it uses floating point division for integers
return f"1.0f*{self.render_element_parentheses(node.left)}/{self.render_element_parentheses(node.right)}"
elif node.op.__class__.__name__ == "FloorDiv":
return (
f"_brian_floordiv({self.render_node(node.left)},"
f" {self.render_node(node.right)})"
)
else:
return NodeRenderer.render_BinOp(self, node)
def render_Constant(self, node):
if node.value is True:
return "true"
elif node.value is False:
return "false"
else:
return super().render_Constant(node)
def render_Name(self, node):
if node.id == "inf":
return "INFINITY"
else:
return node.id
def render_Assign(self, node):
return f"{NodeRenderer.render_Assign(self, node)};"
|