1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
|
"""
Module providing the `Synapses` class and related helper classes/functions.
"""
import functools
import numbers
import re
import weakref
from collections import defaultdict
from collections.abc import Mapping, MutableMapping, Sequence
import numpy as np
from brian2.codegen.codeobject import create_runner_codeobj
from brian2.codegen.translation import get_identifiers_recursively
from brian2.core.base import device_override, weakproxy_with_fallback
from brian2.core.namespace import get_local_namespace
from brian2.core.spikesource import SpikeSource
from brian2.core.variables import DynamicArrayVariable, Variables
from brian2.devices.device import get_device
from brian2.equations.equations import (
DIFFERENTIAL_EQUATION,
PARAMETER,
SUBEXPRESSION,
EquationError,
Equations,
check_subexpressions,
)
from brian2.groups.group import CodeRunner, Group, get_dtype
from brian2.groups.neurongroup import (
SubexpressionUpdater,
check_identifier_pre_post,
extract_constant_subexpressions,
)
from brian2.parsing.bast import brian_ast
from brian2.parsing.expressions import (
is_boolean_expression,
parse_expression_dimensions,
)
from brian2.parsing.rendering import NodeRenderer
from brian2.stateupdaters.base import StateUpdateMethod, UnsupportedEquationsException
from brian2.stateupdaters.exact import linear
from brian2.synapses.parse_synaptic_generator_syntax import parse_synapse_generator
from brian2.units.allunits import second
from brian2.units.fundamentalunits import (
DIMENSIONLESS,
DimensionMismatchError,
Quantity,
fail_for_dimension_mismatch,
)
from brian2.utils.arrays import calc_repeats
from brian2.utils.logger import get_logger
from brian2.utils.stringtools import get_identifiers, word_substitute
MAX_SYNAPSES = 2147483647
__all__ = ["Synapses"]
logger = get_logger(__name__)
class StateUpdater(CodeRunner):
"""
The `CodeRunner` that updates the state variables of a `Synapses`
at every timestep.
"""
def __init__(self, group, method, clock, order, method_options=None):
self.method_choice = method
self.method_options = method_options
CodeRunner.__init__(
self,
group,
"stateupdate",
clock=clock,
when="groups",
order=order,
name=group.name + "_stateupdater",
check_units=False,
generate_empty_code=False,
)
def update_abstract_code(self, run_namespace):
if len(self.group.equations) > 0:
# Resolve variables in the equations to correctly perform checks
# for repeated stateful functions (e.g. rand() calls)
names = self.group.equations.names
external_names = self.group.equations.identifiers | {"dt"}
variables = self.group.resolve_all(
names | external_names,
run_namespace,
# we don't need to raise any warnings
# for the user here, warnings will
# be raised in create_runner_codeobj
user_identifiers=set(),
)
stateupdate_output = StateUpdateMethod.apply_stateupdater(
self.group.equations,
variables,
self.method_choice,
method_options=self.method_options,
group_name=self.group.name,
)
if isinstance(stateupdate_output, str):
self.abstract_code = stateupdate_output
else:
# Note that the reason to send self along with this method is so the StateUpdater
# can be modified! i.e. in GSL StateUpdateMethod a custom CodeObject gets added
# to the StateUpdater together with some auxiliary information
self.abstract_code = stateupdate_output(self)
else:
self.abstract_code = ""
class SummedVariableUpdater(CodeRunner):
"""
The `CodeRunner` that updates a value in the target group with the
sum over values in the `Synapses` object.
"""
def __init__(
self, expression, target_varname, synapses, target, target_size_name, index_var
):
# Handling sumped variables using the standard mechanisms is not
# possible, we therefore also directly give the names of the arrays
# to the template.
code = f"""
_synaptic_var = {expression}
"""
self.target_varname = target_varname
self.expression = expression
self.target_var = synapses.variables[target_varname]
self.target = target
template_kwds = {
"_target_var": self.target_var,
"_target_size_name": target_size_name,
"_index_var": synapses.variables[index_var],
"_target_start": getattr(target, "start", 0),
"_target_stop": getattr(target, "stop", -1),
}
CodeRunner.__init__(
self,
group=synapses,
template="summed_variable",
code=code,
needed_variables=[target_varname, target_size_name, index_var],
# We want to update the summed variable before
# the target group gets updated
clock=target.clock,
when="groups",
order=target.order - 1,
name=synapses.name + "_summed_variable_" + target_varname,
template_kwds=template_kwds,
)
def before_run(self, run_namespace):
variables = self.group.resolve_all(self.expression.identifiers, run_namespace)
rhs_unit = parse_expression_dimensions(self.expression.code, variables)
fail_for_dimension_mismatch(
self.target_var,
# Using a quantity instead of dimensions
# here makes fail_for_dimension_mismatch
# state the dimensions as part of the error
# message
Quantity(1, dim=rhs_unit),
"The target variable "
f"'{self.target_varname}' does not have "
"the same dimensions as the right-hand "
f"side expression '{self.expression}'.",
)
super().before_run(run_namespace)
class SynapticPathway(CodeRunner, Group):
"""
The `CodeRunner` that applies the pre/post statement(s) to the state
variables of synapses where the pre-/postsynaptic group spiked in this
time step.
Parameters
----------
synapses : `Synapses`
Reference to the main `Synapses` object
prepost : {'pre', 'post'}
Whether this object should react to pre- or postsynaptic spikes
objname : str, optional
The name to use for the object, will be appendend to the name of
`synapses` to create a name in the sense of `Nameable`. If ``None``
is provided (the default), ``prepost`` will be used.
delay : `Quantity`, optional
A scalar delay (same delay for all synapses) for this pathway. If
not given, delays are expected to vary between synapses.
"""
def __init__(
self, synapses, code, prepost, objname=None, delay=None, event="spike"
):
self.code = code
self.prepost = prepost
self.event = event
if prepost == "pre":
self.source = synapses.source
self.target = synapses.target
self.synapse_sources = synapses.variables["_synaptic_pre"]
self.synapse_targets = synapses.variables["_synaptic_post"]
order = -1
elif prepost == "post":
self.source = synapses.target
self.target = synapses.source
self.synapse_sources = synapses.variables["_synaptic_post"]
self.synapse_targets = synapses.variables["_synaptic_pre"]
order = 1
else:
raise ValueError("prepost argument has to be either 'pre' or 'post'")
self.synapses = weakref.proxy(synapses)
# Allow to use the same indexing of the delay variable as in the parent
# Synapses object (e.g. 2d indexing with pre- and post-synaptic indices)
self._indices = self.synapses._indices
if objname is None:
objname = prepost
CodeRunner.__init__(
self,
synapses,
"synapses",
code=code,
clock=self.source.clock,
when="synapses",
order=order,
name=synapses.name + "_" + objname,
template_kwds={"pathway": self},
)
self._pushspikes_codeobj = None
self.spikes_start = self.source.start
self.spikes_stop = self.source.stop
self.eventspace_name = f"_{event}space"
self.eventspace = None # will be set in before_run
# Setting the Synapses object instead of "self" as an owner makes
# indexing conflicts disappear (e.g. with synapses connecting subgroups)
self.variables = Variables(synapses)
self.variables.add_reference(self.eventspace_name, self.source)
self.variables.add_reference("N", synapses)
if prepost == "pre":
self.variables.add_reference("_n_sources", synapses, "N_pre")
self.variables.add_reference("_n_targets", synapses, "N_post")
self.variables.add_reference("_source_dt", synapses.source, "dt")
else:
self.variables.add_reference("_n_sources", synapses, "N_post")
self.variables.add_reference("_n_targets", synapses, "N_pre")
self.variables.add_reference("_source_dt", synapses.target, "dt")
if delay is None: # variable delays
if getattr(synapses, "N", None) is not None:
n_synapses = synapses.N
else:
n_synapses = 0
self.variables.add_dynamic_array(
"delay", dimensions=second.dim, size=n_synapses, constant=True
)
# Register the object with the `SynapticIndex` object so it gets
# automatically resized
synapses.register_variable(self.variables["delay"])
else:
if not isinstance(delay, Quantity):
raise TypeError(
f"Cannot set the delay for pathway '{objname}': "
f"expected a quantity, got {type(delay)} instead."
)
if delay.size != 1:
raise TypeError(
f"Cannot set the delay for pathway '{objname}': "
"expected a scalar quantity, got a "
f"quantity with shape {delay.shape!s} instead."
)
fail_for_dimension_mismatch(
delay,
second,
"Delay has to be specified in units of seconds but got {value}",
value=delay,
)
# We use a "dynamic" array of constant size here because it makes
# the generated code easier, we don't need to deal with a different
# type for scalar and variable delays
self.variables.add_dynamic_array(
"delay", dimensions=second.dim, size=1, constant=True, scalar=True
)
# Since this array does not grow with the number of synapses, we
# have to resize it ourselves
self.variables["delay"].resize(1)
self.variables["delay"].set_value(delay)
self._delays = self.variables["delay"]
# Re-extract the last part of the name from the full name
self.objname = self.name[len(synapses.name) + 1 :]
#: The `CodeObject` initalising the `SpikeQueue` at the begin of a run
self._initialise_queue_codeobj = None
self.namespace = synapses.namespace
# Allow the use of string expressions referring to synaptic (including
# pre-/post-synaptic) variables
# Only include non-private variables (and their indices)
synaptic_vars = {
varname
for varname in list(synapses.variables)
if not varname.startswith("_")
}
synaptic_idcs = {
varname: synapses.variables.indices[varname] for varname in synaptic_vars
}
synaptic_vars |= {
index_name
for index_name in synaptic_idcs.values()
if index_name not in ["_idx", "0"]
}
self.variables.add_references(synapses, synaptic_vars)
self.variables.indices.update(synaptic_idcs)
#: The `SpikeQueue`
self.queue = get_device().spike_queue(self.source.start, self.source.stop)
self.variables.add_object("_queue", self.queue)
self._enable_group_attributes()
def check_variable_write(self, variable):
# Forward the check to the `Synapses` object (raises an error if no
# synapse has been created yet)
self.synapses.check_variable_write(variable)
@device_override("synaptic_pathway_update_abstract_code")
def update_abstract_code(self, run_namespace=None, level=0):
if self.synapses.event_driven is not None:
event_driven_eqs = self.synapses.event_driven
try:
event_driven_update = linear(event_driven_eqs, self.group.variables)
except UnsupportedEquationsException:
err = (
"Cannot solve the differential equations as "
"event-driven. Use (clock-driven) instead."
)
raise UnsupportedEquationsException(err)
# TODO: Any way to do this more elegantly?
event_driven_update = re.sub(
r"\bdt\b", "(t - lastupdate)", event_driven_update
)
self.abstract_code = event_driven_update + "\n"
else:
self.abstract_code = ""
self.abstract_code += self.code + "\n"
if self.synapses.event_driven is not None:
self.abstract_code += "lastupdate = t\n"
@device_override("synaptic_pathway_before_run")
def before_run(self, run_namespace):
super().before_run(run_namespace)
def create_code_objects(self, run_namespace):
if self._pushspikes_codeobj is None:
# Since this now works for general events not only spikes, we have to
# pass the information about which variable to use to the template,
# it can not longer simply refer to "_spikespace"
# Strictly speaking this is only true for the standalone mode at the
# moment, since in runtime, all the template does is to call
# SynapticPathway.push_spike
eventspace_name = f"_{self.event}space"
template_kwds = {
"eventspace_variable": self.source.variables[eventspace_name]
}
needed_variables = [eventspace_name]
self._pushspikes_codeobj = create_runner_codeobj(
self,
"", # no code
"synapses_push_spikes",
name=self.name + "_push_spikes",
check_units=False,
additional_variables=self.variables,
needed_variables=needed_variables,
template_kwds=template_kwds,
run_namespace=run_namespace,
)
self.code_objects[:] = [
weakref.proxy(self._pushspikes_codeobj),
weakref.proxy(self.create_default_code_object(run_namespace)),
]
def initialise_queue(self):
self.eventspace = self.source.variables[self.eventspace_name].get_value()
n_synapses = len(self.synapses)
if n_synapses == 0 and not self.synapses._connect_called:
raise TypeError(
"Synapses object '%s' does not do anything, since "
"it has not created synapses with 'connect'. "
"Set its active attribute to False if you "
"intend to do only do this for a subsequent"
" run." % self.synapses.name
)
# Update the dt (might have changed between runs)
self.queue.prepare(
self._delays.get_value(),
self.source.clock.dt_,
self.synapse_sources.get_value(),
)
if (
len({self.source.clock.dt_, self.synapses.clock.dt_, self.target.clock.dt_})
> 1
):
logger.warn(
f"Note that the synaptic pathway '{self.name}' will run on the "
f"clock of the group '{self.source.name}' using a dt of "
f"{self.source.clock.dt}. Either the Synapses object "
f"'{self.synapses.name}' or the target '{self.target.name}' "
"(or both) are using a different dt. This might lead to "
"unexpected results. In particular, all delays will be "
f"rounded to multiples of {self.source.clock.dt}. If in "
f"doubt, try to ensure that '{self.source.name}', "
f"'{self.synapses.name}', and '{self.target.name}' use the "
"same dt.",
"synapses_dt_mismatch",
once=True,
)
def _full_state(self):
state = super()._full_state()
if self.queue is not None:
state["_spikequeue"] = self.queue._full_state()
else:
state["_spikequeue"] = None
return state
def _restore_from_full_state(self, state):
# We have to handle the SpikeQueue separately from the other state
# variables, so remove it from the state dictionary so that it does not
# get treated as a state variable by the standard mechanism in
# `VariableOwner`
queue_state = state.pop("_spikequeue")
super()._restore_from_full_state(state)
if self.queue is None:
self.queue = get_device().spike_queue(self.source.start, self.source.stop)
self.queue._restore_from_full_state(queue_state)
# Put the spike queue state back for future restore calls
state["_spikequeue"] = queue_state
def push_spikes(self):
# Push new events (e.g. spikes) into the queue
events = self.eventspace[: self.eventspace[len(self.eventspace) - 1]]
if len(events):
self.queue.push(events)
def slice_to_test(x):
"""
Returns a testing function corresponding to whether an index is in slice x.
x can also be an int.
"""
try:
x = int(x)
return lambda y: (y == x)
except TypeError:
pass
if isinstance(x, slice):
if isinstance(x, slice) and x == slice(None):
# No need for testing
return lambda y: np.repeat(True, len(y))
start, stop, step = x.start, x.stop, x.step
if start is None:
# No need to test for >= start
if step is None:
# Only have a stop value
return lambda y: (y < stop)
else:
# Stop and step
return lambda y: (y < stop) & ((y % step) == 0)
else:
# We need to test for >= start
if step is None:
if stop is None:
# Only a start value
return lambda y: (y >= start)
else:
# Start and stop
return lambda y: (y >= start) & (y < stop)
else:
if stop is None:
# Start and step value
return lambda y: (y >= start) & ((y - start) % step == 0)
else:
# Start, step and stop
return (
lambda y: (y >= start) & ((y - start) % step == 0) & (y < stop)
)
else:
raise TypeError(f"Expected int or slice, got {type(x)} instead")
def find_synapses(index, synaptic_neuron):
try:
index = index.item()
except (TypeError, ValueError):
pass
if isinstance(index, (int, slice)):
test = slice_to_test(index)
found = test(synaptic_neuron)
synapses = np.flatnonzero(found)
else:
synapses = []
for neuron in index:
targets = np.flatnonzero(synaptic_neuron == neuron)
synapses.extend(targets)
synapses = np.array(synapses, dtype=np.int32)
return synapses
class SynapticSubgroup:
"""
A simple subgroup of `Synapses` that can be used for indexing.
Parameters
----------
indices : `ndarray` of int
The synaptic indices represented by this subgroup.
synaptic_pre : `DynamicArrayVariable`
References to all pre-synaptic indices. Only used to throw an error
when new synapses where added after creating this object.
"""
def __init__(self, synapses, indices):
self.synapses = weakproxy_with_fallback(synapses)
self._stored_indices = indices
self._synaptic_pre = synapses.variables["_synaptic_pre"]
self._source_N = self._synaptic_pre.size # total number of synapses
def _indices(self, index_var="_idx"):
if index_var != "_idx":
raise AssertionError(f"Did not expect index {index_var} here.")
if len(self._synaptic_pre.get_value()) != self._source_N:
raise RuntimeError(
"Synapses have been added/removed since this "
"synaptic subgroup has been created"
)
return self._stored_indices
def __len__(self):
return len(self._stored_indices)
def __repr__(self):
return (
f"<{self.__class__.__name__}, storing {len(self._stored_indices):d} "
f"indices of {self.synapses.name}>"
)
class SynapticIndexing:
def __init__(self, synapses):
self.synapses = weakref.proxy(synapses)
self.source = weakproxy_with_fallback(self.synapses.source)
self.target = weakproxy_with_fallback(self.synapses.target)
self.synaptic_pre = synapses.variables["_synaptic_pre"]
self.synaptic_post = synapses.variables["_synaptic_post"]
if synapses.multisynaptic_index is not None:
self.synapse_number = synapses.variables[synapses.multisynaptic_index]
else:
self.synapse_number = None
def __call__(self, index=None, index_var="_idx"):
"""
Returns synaptic indices for `index`, which can be a tuple of indices
(including arrays and slices), a single index or a string.
"""
if index is None or (isinstance(index, str) and index == "True"):
index = slice(None)
if not isinstance(index, (tuple, str)) and (
isinstance(index, (numbers.Integral, np.ndarray, slice, Sequence))
or hasattr(index, "_indices")
):
if hasattr(index, "_indices"):
final_indices = index._indices(index_var=index_var).astype(np.int32)
elif isinstance(index, slice):
start, stop, step = index.indices(len(self.synaptic_pre.get_value()))
final_indices = np.arange(start, stop, step, dtype=np.int32)
else:
final_indices = np.asarray(index)
elif isinstance(index, tuple):
if len(index) == 2: # two indices (pre- and postsynaptic cell)
index = (index[0], index[1], slice(None))
elif len(index) > 3:
raise IndexError(f"Need 1, 2 or 3 indices, got {len(index)}.")
i_indices, j_indices, k_indices = index
# Convert to absolute indices (e.g. for subgroups)
# Allow the indexing to fail, we'll later return an empty array in
# that case
try:
if hasattr(
i_indices, "_indices"
): # will return absolute indices already
i_indices = i_indices._indices()
else:
i_indices = self.source._indices(i_indices)
pre_synapses = find_synapses(i_indices, self.synaptic_pre.get_value())
except IndexError:
pre_synapses = np.array([], dtype=np.int32)
try:
if hasattr(j_indices, "_indices"):
j_indices = j_indices._indices()
else:
j_indices = self.target._indices(j_indices)
post_synapses = find_synapses(j_indices, self.synaptic_post.get_value())
except IndexError:
post_synapses = np.array([], dtype=np.int32)
matching_synapses = np.intersect1d(
pre_synapses, post_synapses, assume_unique=True
)
if isinstance(k_indices, slice) and k_indices == slice(None):
final_indices = matching_synapses
else:
if self.synapse_number is None:
raise IndexError(
"To index by the third dimension you need "
"to switch on the calculation of the "
"'multisynaptic_index' when you create "
"the Synapses object."
)
if isinstance(k_indices, (numbers.Integral, slice)):
test_k = slice_to_test(k_indices)
else:
raise NotImplementedError(
"Indexing synapses with arrays notimplemented yet"
)
# We want to access the raw arrays here, not go through the Variable
synapse_numbers = self.synapse_number.get_value()[matching_synapses]
final_indices = np.intersect1d(
matching_synapses,
np.flatnonzero(test_k(synapse_numbers)),
assume_unique=True,
)
else:
raise IndexError(f"Unsupported index type {type(index)}")
if index_var not in ("_idx", "0"):
return index_var.get_value()[final_indices.astype(np.int32)]
else:
return final_indices.astype(np.int32)
class Synapses(Group):
"""
Class representing synaptic connections.
Creating a new `Synapses` object does by default not create any synapses,
you have to call the `Synapses.connect` method for that.
Parameters
----------
source : `SpikeSource`
The source of spikes, e.g. a `NeuronGroup`.
target : `Group`, optional
The target of the spikes, typically a `NeuronGroup`. If none is given,
the same as `source`
model : `str`, `Equations`, optional
The model equations for the synapses.
on_pre : str, dict, optional
The code that will be executed after every pre-synaptic spike. Can be
either a single (possibly multi-line) string, or a dictionary mapping
pathway names to code strings. In the first case, the pathway will be
called ``pre`` and made available as an attribute of the same name.
In the latter case, the given names will be used as the
pathway/attribute names. Each pathway has its own code and its own
delays.
pre : str, dict, optional
Deprecated. Use ``on_pre`` instead.
on_post : str, dict, optional
The code that will be executed after every post-synaptic spike. Same
conventions as for `on_pre``, the default name for the pathway is
``post``.
post : str, dict, optional
Deprecated. Use ``on_post`` instead.
delay : `Quantity`, dict, optional
The delay for the "pre" pathway (same for all synapses) or a dictionary
mapping pathway names to delays. If a delay is specified in this way
for a pathway, it is stored as a single scalar value. It can still
be changed afterwards, but only to a single scalar value. If you want
to have delays that vary across synapses, do not use the keyword
argument, but instead set the delays via the attribute of the pathway,
e.g. ``S.pre.delay = ...`` (or ``S.delay = ...`` as an abbreviation),
``S.post.delay = ...``, etc.
on_event : str or dict, optional
Define the events which trigger the pre and post pathways. By default,
both pathways are triggered by the ``'spike'`` event, i.e. the event
that is triggered by the ``threshold`` condition in the connected
groups.
multisynaptic_index : str, optional
The name of a variable (which will be automatically created) that stores
the "synapse number". This number enumerates all synapses between the
same source and target so that they can be distinguished. For models
where each source-target pair has only a single connection, this number
only wastes memory (it would always default to 0), it is therefore not
stored by default. Defaults to ``None`` (no variable).
namespace : dict, optional
A dictionary mapping identifier names to objects. If not given, the
namespace will be filled in at the time of the call of `Network.run`,
with either the values from the ``namespace`` argument of the
`Network.run` method or from the local context, if no such argument is
given.
dtype : `dtype`, dict, optional
The `numpy.dtype` that will be used to store the values, or a
dictionary specifying the type for variable names. If a value is not
provided for a variable (or no value is provided at all), the preference
setting `core.default_float_dtype` is used.
codeobj_class : class, optional
The `CodeObject` class to use to run code.
dt : `Quantity`, optional
The time step to be used for the update of the state variables.
Cannot be combined with the `clock` argument.
clock : `Clock`, optional
The update clock to be used. If neither a clock, nor the `dt` argument
is specified, the `defaultclock` will be used.
order : int, optional
The priority of of this group for operations occurring at the same time
step and in the same scheduling slot. Defaults to 0.
method : str, `StateUpdateMethod`, optional
The numerical integration method to use. If none is given, an
appropriate one is automatically determined.
name : str, optional
The name for this object. If none is given, a unique name of the form
``synapses``, ``synapses_1``, etc. will be automatically chosen.
"""
add_to_magic_network = True
def __init__(
self,
source,
target=None,
model=None,
on_pre=None,
pre=None,
on_post=None,
post=None,
connect=None,
delay=None,
on_event="spike",
multisynaptic_index=None,
namespace=None,
dtype=None,
codeobj_class=None,
dt=None,
clock=None,
order=0,
method=("exact", "euler", "heun"),
method_options=None,
name="synapses*",
):
if connect is not None:
raise TypeError(
"The connect keyword argument is no longer "
"supported, call the connect method instead."
)
if pre is not None:
if on_pre is not None:
raise TypeError(
"Cannot specify both 'pre' and 'on_pre'. The "
"'pre' keyword is deprecated, use the 'on_pre' "
"keyword instead."
)
logger.warn(
"The 'pre' keyword is deprecated, use 'on_pre' instead.",
"deprecated_pre",
once=True,
)
on_pre = pre
if post is not None:
if on_post is not None:
raise TypeError(
"Cannot specify both 'post' and 'on_post'. The "
"'post' keyword is deprecated, use the "
"'on_post' keyword instead."
)
logger.warn(
"The 'post' keyword is deprecated, use 'on_post' instead.",
"deprecated_post",
once=True,
)
on_post = post
Group.__init__(
self,
dt=dt,
clock=clock,
when="start",
order=order,
namespace=namespace,
name=name,
)
if dtype is None:
dtype = {}
if isinstance(dtype, MutableMapping):
dtype["lastupdate"] = self._clock.variables["t"].dtype
#: remember whether connect was called to raise an error if an
#: assignment to a synaptic variable is attempted without a preceding
#: connect.
self._connect_called = False
self.codeobj_class = codeobj_class
self.source = source
self.add_dependency(source)
if target is None:
self.target = self.source
else:
self.target = target
self.add_dependency(target)
##### Prepare and validate equations
if model is None:
model = ""
if isinstance(model, str):
model = Equations(model)
if not isinstance(model, Equations):
raise TypeError(
"model has to be a string or an Equations "
f"object, is '{type(model)}' instead."
)
# Check flags
model.check_flags(
{
DIFFERENTIAL_EQUATION: ["event-driven", "clock-driven"],
SUBEXPRESSION: ["summed", "shared", "constant over dt"],
PARAMETER: ["constant", "shared", "linked"],
},
incompatible_flags=[
("event-driven", "clock-driven"),
# 'summed' cannot be combined with
# any other flag
("summed", "shared", "constant over dt"),
],
)
for name in ["i", "j", "delay"]:
if name in model.names:
raise SyntaxError(
f"'{name}' is a reserved name that cannot be "
"used as a variable name."
)
# Add the "multisynaptic index", if desired
self.multisynaptic_index = multisynaptic_index
if multisynaptic_index is not None:
if not isinstance(multisynaptic_index, str):
raise TypeError("multisynaptic_index argument has to be a string")
model = model + Equations(f"{multisynaptic_index} : integer")
# Separate subexpressions depending whether they are considered to be
# constant over a time step or not
model, constant_over_dt = extract_constant_subexpressions(model)
# Separate the equations into event-driven equations,
# continuously updated equations and summed variable updates
event_driven = []
continuous = []
summed_updates = []
for single_equation in model.values():
if "event-driven" in single_equation.flags:
event_driven.append(single_equation)
elif "summed" in single_equation.flags:
summed_updates.append(single_equation)
else:
if (
single_equation.type == DIFFERENTIAL_EQUATION
and "clock-driven" not in single_equation.flags
):
logger.info(
"The synaptic equation for the variable "
f"{single_equation.varname} does not specify whether it "
"should be integrated at every timestep ('clock-driven') "
"or only at spiking events ('event-driven'). It will be "
"integrated at every timestep which can slow down your "
"simulation unnecessarily if you only need the values of "
"this variable whenever a spike occurs. Specify the equation "
"as clock-driven explicitly to avoid this warning.",
"clock_driven",
once=True,
)
continuous.append(single_equation)
if single_equation.type != DIFFERENTIAL_EQUATION:
# General subexpressions (not summed variables) or
# parameters, might be referred from event-driven equations
# as well.
# Note that the code generation step will ignore them if
# nothing refers to them, so we don't have to filter here.
event_driven.append(single_equation)
# Get the dependencies of all equations
dependencies = model.dependencies
# Check whether there are dependencies between summed
# variables/clocked-driven equations and event-driven variables
for eq_name, deps in dependencies.items():
eq = model[eq_name]
if not (eq.type == DIFFERENTIAL_EQUATION or "summed" in eq.flags):
continue
if eq in continuous:
Synapses.verify_dependencies(
eq, "clock-driven", deps, event_driven, "event-driven"
)
elif "summed" in eq.flags:
Synapses.verify_dependencies(
eq, "summed", deps, event_driven, "event-driven"
)
elif eq in event_driven:
Synapses.verify_dependencies(
eq, "event-driven", deps, continuous, "clock-driven"
)
if any(eq.type == DIFFERENTIAL_EQUATION for eq in event_driven):
self.event_driven = Equations(event_driven)
# Add the lastupdate variable, needed for event-driven updates
model += Equations("lastupdate : second")
else:
self.event_driven = None
self._linked_variables = set()
self._create_variables(model, user_dtype=dtype)
self.equations = Equations(continuous)
#: Set of `Variable` objects that should be resized when the
#: number of synapses changes
self._registered_variables = set()
for varname, var in self.variables.items():
if (
isinstance(var, DynamicArrayVariable)
and self.variables.indices[varname] == "_idx"
):
# Register the array with the `SynapticItemMapping` object so
# it gets automatically resized
self.register_variable(var)
# Support 2d indexing
self._indices = SynapticIndexing(self)
if delay is None:
delay = {}
if isinstance(delay, Quantity):
delay = {"pre": delay}
elif not isinstance(delay, Mapping):
raise TypeError(
"Delay argument has to be a quantity or a "
f"dictionary, is type {type(delay)} instead."
)
#: List of names of all updaters, e.g. ['pre', 'post']
self._synaptic_updaters = []
#: List of all `SynapticPathway` objects
self._pathways = []
if isinstance(on_event, str):
self.default_event = on_event
events_dict = {}
else:
self.default_event = "spike"
events_dict = dict(on_event)
#: "Events" for all the pathways
self.events = events_dict
for prepost, argument in zip(("pre", "post"), (on_pre, on_post)):
if not argument:
continue
if isinstance(argument, str):
pathway_delay = delay.get(prepost, None)
self._add_updater(
argument,
prepost,
delay=pathway_delay,
event=self.events.get(prepost, self.default_event),
)
elif isinstance(argument, Mapping):
for key, value in argument.items():
if not isinstance(key, str):
err_msg = (
f"Keys for the 'on_{prepost}' argument"
"have to be strings, got "
f"{type(key)} instead."
)
raise TypeError(err_msg)
pathway_delay = delay.get(key, None)
self._add_updater(
value,
prepost,
objname=key,
delay=pathway_delay,
event=self.events.get(key, self.default_event),
)
# Check whether any delays were specified for pathways that don't exist
for pathway in delay:
if pathway not in self._synaptic_updaters:
raise ValueError(
f"Cannot set the delay for pathway '{pathway}': unknown pathway."
)
#: Performs numerical integration step
self.state_updater = None
# We only need a state update if we have differential equations
if len(self.equations.diff_eq_names):
self.state_updater = StateUpdater(
self,
method,
method_options=method_options,
clock=self.clock,
order=order,
)
self.contained_objects.append(self.state_updater)
#: Update the "constant over a time step" subexpressions
self.subexpression_updater = None
if len(constant_over_dt) > 0:
self.subexpression_updater = SubexpressionUpdater(self, constant_over_dt)
self.contained_objects.append(self.subexpression_updater)
#: "Summed variable" mechanism -- sum over all synapses of a
#: pre-/postsynaptic target
self.summed_updaters = {}
# We want to raise an error if the same variable is updated twice
# using this mechanism. This could happen if the Synapses object
# connected a NeuronGroup to itself since then all variables are
# accessible as var_pre and var_post.
summed_targets = set()
for single_equation in summed_updates:
varname = single_equation.varname
if not (varname.endswith("_pre") or varname.endswith("_post")):
raise ValueError(
f"The summed variable '{varname}' does not end "
"in '_pre' or '_post'."
)
if varname not in self.variables:
raise ValueError(
f"The summed variable '{varname}' does not refer "
"to any known variable in the "
"target group."
)
if varname.endswith("_pre"):
summed_target = self.source
summed_target_size_name = "N_pre"
orig_varname = varname[:-4]
summed_var_index = "_synaptic_pre"
else:
summed_target = self.target
summed_target_size_name = "N_post"
orig_varname = varname[:-5]
summed_var_index = "_synaptic_post"
target_eq = getattr(summed_target, "equations", {}).get(orig_varname, None)
if target_eq is None or target_eq.type != PARAMETER:
raise ValueError(
f"The summed variable '{varname}' needs a "
f"corresponding parameter '{orig_varname}' in the "
"target group."
)
fail_for_dimension_mismatch(
self.variables["_summed_" + varname].dim,
self.variables[varname].dim,
"Summed variables need to have "
"the same units in Synapses "
"and the target group",
)
if self.variables[varname] in summed_targets:
raise ValueError(
f"The target variable '{orig_varname}' is already "
"updated by another summed variable"
)
summed_targets.add(self.variables[varname])
updater = SummedVariableUpdater(
single_equation.expr,
varname,
self,
summed_target,
summed_target_size_name,
summed_var_index,
)
self.summed_updaters[varname] = updater
self.contained_objects.append(updater)
# Activate name attribute access
self._enable_group_attributes()
@staticmethod
def verify_dependencies(
eq, eq_type, deps, should_not_depend_on, should_not_depend_on_name
):
"""
Helper function to verify that event-driven equations do not depend
on clock-driven equations and the other way round.
Parameters
----------
eq : `SingleEquation`
The equation to verify
eq_type : str
The type of the equation (for the error message)
deps : list
A list of dependencies
should_not_depend_on : list
A list of equations to verify against the dependencies
should_not_depend_on_name : str
The name of the list of equations (for the error message)
Raises
------
`EquationError`
If the given equation depends on something in the other set of
equations.
"""
for dep in deps:
if dep.equation in should_not_depend_on and (
dep.equation.type == DIFFERENTIAL_EQUATION
or "summed" in dep.equation.flags
):
via_str = ""
if dep.via:
via_str = " (via " + ", ".join(f"'{v}'" for v in dep.via) + ")"
raise EquationError(
f"The {eq_type} '{eq.varname}' should "
"not depend on the "
f"{should_not_depend_on_name} variable "
f"'{dep.equation.varname}'{via_str}."
)
N_outgoing_pre = property(
fget=lambda self: self.variables["N_outgoing"].get_value(),
doc=(
"The number of outgoing synapses for each neuron in the pre-synaptic group."
),
)
N_incoming_post = property(
fget=lambda self: self.variables["N_incoming"].get_value(),
doc=(
"The number of incoming synapses for each neuron in the "
"post-synaptic group."
),
)
def __getitem__(self, item):
indices = self.indices[item]
return SynapticSubgroup(self, indices)
def _set_delay(self, delay, with_unit):
if "pre" not in self._synaptic_updaters:
raise AttributeError(
"Synapses do not have a 'pre' pathway, "
"do not know what 'delay' refers to."
)
# Note that we cannot simply say: "self.pre.delay = delay" because this
# would not correctly deal with references to external constants
var = self.pre.variables["delay"]
if with_unit:
reference = var.get_addressable_value_with_unit("delay", self.pre)
else:
reference = var.get_addressable_value("delay", self.pre)
reference.set_item("True", delay, level=2)
def _get_delay(self, with_unit):
if "pre" not in self._synaptic_updaters:
raise AttributeError(
"Synapses do not have a 'pre' pathway, "
"do not know what 'delay' refers to."
)
var = self.pre.variables["delay"]
if with_unit:
return var.get_addressable_value_with_unit("delay", self.pre)
else:
return var.get_addressable_value("delay", self.pre)
delay = property(
functools.partial(_get_delay, with_unit=True),
functools.partial(_set_delay, with_unit=True),
doc="The presynaptic delay (if a pre-synaptic pathway exists).",
)
delay_ = property(
functools.partial(_get_delay, with_unit=False),
functools.partial(_set_delay, with_unit=False),
doc=(
"The presynaptic delay without unit information (if a"
"pre-synaptic pathway exists)."
),
)
def _add_updater(self, code, prepost, objname=None, delay=None, event="spike"):
"""
Add a new target updater. Users should call `add_pre` or `add_post`
instead.
Parameters
----------
code : str
The abstract code that should be executed on pre-/postsynaptic
spikes.
prepost : {'pre', 'post'}
Whether the code is triggered by presynaptic or postsynaptic spikes
objname : str, optional
A name for the object, see `SynapticPathway` for more details.
delay : `Quantity`, optional
A scalar delay (same delay for all synapses) for this pathway. If
not given, delays are expected to vary between synapses.
Returns
-------
objname : str
The final name for the object. Equals `objname` if it was explicitly
given (and did not end in a wildcard character).
"""
if prepost == "pre":
spike_group, group_name = self.source, "Source"
elif prepost == "post":
spike_group, group_name = self.target, "Target"
else:
raise AssertionError(
f"'prepost' argument has to be 'pre' or 'post', is '{prepost}'."
)
if event not in spike_group.events:
if event == "spike":
threshold_text = " Did you forget to set a 'threshold'?"
else:
threshold_text = ""
raise ValueError(
f"{group_name} group '{spike_group.name}' does not define "
f"an event '{event}'.{threshold_text}"
)
if not isinstance(spike_group, SpikeSource) or not hasattr(
spike_group, "clock"
):
raise TypeError(
f"'{group_name}' has to be a SpikeSource with spikes and"
f" clock attribute. Is type {type(spike_group)!r} instead."
)
updater = SynapticPathway(
self, code, prepost, objname, delay=delay, event=event
)
objname = updater.objname
if hasattr(self, objname):
raise ValueError(
f"Cannot add updater with name '{objname}', synapses "
"object already has an attribute with this "
"name."
)
setattr(self, objname, updater)
self._synaptic_updaters.append(objname)
self._pathways.append(updater)
self.contained_objects.append(updater)
return objname
def _create_variables(self, equations, user_dtype=None):
"""
Create the variables dictionary for this `Synapses`, containing
entries for the equation variables and some standard entries.
"""
self.variables = Variables(self)
# Standard variables always present
self.variables.add_dynamic_array(
"_synaptic_pre", size=0, dtype=np.int32, constant=True, read_only=True
)
self.variables.add_dynamic_array(
"_synaptic_post", size=0, dtype=np.int32, constant=True, read_only=True
)
self.variables.create_clock_variables(self._clock)
if "_offset" in self.target.variables:
self.variables.add_reference("_target_offset", self.target, "_offset")
else:
self.variables.add_constant("_target_offset", value=0)
if "_offset" in self.source.variables:
self.variables.add_reference("_source_offset", self.source, "_offset")
else:
self.variables.add_constant("_source_offset", value=0)
# To cope with connections to/from other synapses, N_incoming/N_outgoing
# will be resized when synapses are created
self.variables.add_dynamic_array(
"N_incoming",
size=0,
dtype=np.int32,
constant=True,
read_only=True,
index="_postsynaptic_idx",
)
self.variables.add_dynamic_array(
"N_outgoing",
size=0,
dtype=np.int32,
constant=True,
read_only=True,
index="_presynaptic_idx",
)
# We have to make a distinction here between the indices
# and the arrays (even though they refer to the same object)
# the synaptic propagation template would otherwise overwrite
# synaptic_post in its namespace with the value of the
# postsynaptic index, leading to errors for the next
# propagation.
self.variables.add_reference("_presynaptic_idx", self, "_synaptic_pre")
self.variables.add_reference("_postsynaptic_idx", self, "_synaptic_post")
# Except for subgroups (which potentially add an offset), the "i" and
# "j" variables are simply equivalent to `_synaptic_pre` and
# `_synaptic_post`
if getattr(self.source, "start", 0) == 0:
self.variables.add_reference("i", self, "_synaptic_pre")
else:
self.variables.add_reference(
"_source_i", self.source.source, "i", index="_presynaptic_idx"
)
self.variables.add_reference("_source_offset", self.source, "_offset")
self.variables.add_subexpression(
"i",
dtype=self.source.source.variables["i"].dtype,
expr="_source_i - _source_offset",
index="_presynaptic_idx",
)
if getattr(self.target, "start", 0) == 0:
self.variables.add_reference("j", self, "_synaptic_post")
else:
self.variables.add_reference(
"_target_j", self.target.source, "i", index="_postsynaptic_idx"
)
self.variables.add_reference("_target_offset", self.target, "_offset")
self.variables.add_subexpression(
"j",
dtype=self.target.source.variables["i"].dtype,
expr="_target_j - _target_offset",
index="_postsynaptic_idx",
)
# Add the standard variables
self.variables.add_array(
"N", dtype=np.int32, size=1, scalar=True, constant=True, read_only=True
)
for eq in equations.values():
dtype = get_dtype(eq, user_dtype)
if eq.type in (DIFFERENTIAL_EQUATION, PARAMETER):
check_identifier_pre_post(eq.varname)
constant = "constant" in eq.flags
shared = "shared" in eq.flags
linked = "linked" in eq.flags
if linked:
self._linked_variables.add(eq.varname)
elif shared:
self.variables.add_array(
eq.varname,
size=1,
dimensions=eq.dim,
dtype=dtype,
constant=constant,
scalar=True,
index="0",
)
else:
self.variables.add_dynamic_array(
eq.varname,
size=0,
dimensions=eq.dim,
dtype=dtype,
constant=constant,
)
elif eq.type == SUBEXPRESSION:
if "summed" in eq.flags:
# Give a special name to the subexpression for summed
# variables to avoid confusion with the pre/postsynaptic
# target variable
varname = "_summed_" + eq.varname
else:
check_identifier_pre_post(eq.varname)
varname = eq.varname
self.variables.add_subexpression(
varname,
dimensions=eq.dim,
expr=str(eq.expr),
scalar="shared" in eq.flags,
dtype=dtype,
)
else:
raise AssertionError(f"Unknown type of equation: {eq.eq_type}")
# Stochastic variables
for xi in equations.stochastic_variables:
self.variables.add_auxiliary_variable(xi, dimensions=(second**-0.5).dim)
# Add all the pre and post variables with _pre and _post suffixes
for name in getattr(self.source, "variables", {}):
# Raise an error if a variable name is also used for a synaptic
# variable (we ignore 'lastupdate' to allow connections from another
# Synapses object)
if (
name in equations.names
and name != "lastupdate"
and "summed" not in equations[name].flags
):
error_msg = (
f"The pre-synaptic variable {name} has the same "
"name as a synaptic variable, rename the synaptic "
"variable."
)
if name + "_syn" not in self.variables:
error_msg += f"(for example to '{name}_syn') "
error_msg += "to avoid confusion"
raise ValueError(error_msg)
if name.startswith("_"):
continue # Do not add internal variables
var = self.source.variables[name]
index = "0" if var.scalar else "_presynaptic_idx"
try:
self.variables.add_reference(
name + "_pre", self.source, name, index=index
)
except TypeError:
logger.diagnostic(
f"Cannot include a reference to '{name}' in "
f"'{self.name}', '{name}' uses a non-standard "
"indexing in the pre-synaptic group "
f"'{self.source.name}'."
)
for name in getattr(self.target, "variables", {}):
# Raise an error if a variable name is also used for a synaptic
# variable (we ignore 'lastupdate' to allow connections to another
# Synapses object)
if (
name in equations.names
and name != "lastupdate"
and "summed" not in equations[name].flags
):
error_msg = (
f"The post-synaptic variable '{name}' has the same "
"name as a synaptic variable, rename the synaptic "
"variable."
)
if name + "_syn" not in self.variables:
error_msg += f"(for example to '{name}_syn') "
error_msg += "to avoid confusion"
raise ValueError(error_msg)
if name.startswith("_"):
continue # Do not add internal variables
var = self.target.variables[name]
index = "0" if var.scalar else "_postsynaptic_idx"
try:
self.variables.add_reference(
name + "_post", self.target, name, index=index
)
# Also add all the post variables without a suffix, but only if
# it does not have a post or pre suffix in the target group
# (which could happen when connecting to synapses)
if not name.endswith("_post") or name.endswith("_pre"):
self.variables.add_reference(name, self.target, name, index=index)
except TypeError:
logger.diagnostic(
f"Cannot include a reference to '{name}' in "
f"'{self.name}', '{name}' uses a non-standard "
"indexing in the post-synaptic group "
f"'{self.target.name}'."
)
# Check scalar subexpressions
for eq in equations.values():
if eq.type == SUBEXPRESSION and "shared" in eq.flags:
var = self.variables[eq.varname]
for identifier in var.identifiers:
if identifier in self.variables:
if not self.variables[identifier].scalar:
raise SyntaxError(
f"Shared subexpression '{eq.varname}' "
"refers to non-shared variable "
f"'{identifier}'."
)
def before_run(self, run_namespace):
self.equations.check_units(self, run_namespace=run_namespace)
# Check that subexpressions that refer to stateful functions are labeled
# as "constant over dt"
check_subexpressions(self, self.equations, run_namespace)
super().before_run(run_namespace=run_namespace)
@device_override("synapses_connect")
def connect(
self,
condition=None,
i=None,
j=None,
p=1.0,
n=1,
skip_if_invalid=False,
namespace=None,
level=0,
):
"""
Add synapses.
See :doc:`/user/synapses` for details.
Parameters
----------
condition : str, bool, optional
A boolean or string expression that evaluates to a boolean.
The expression can depend on indices ``i`` and ``j`` and on
pre- and post-synaptic variables. Can be combined with
arguments ``n``, and ``p`` but not ``i`` or ``j``.
i : int, ndarray of int, str, optional
The presynaptic neuron indices It can be an index or array of
indices if combined with the ``j`` argument, or it can be a string
generator expression.
j : int, ndarray of int, str, optional
The postsynaptic neuron indices. It can be an index or array of
indices if combined with the ``i`` argument, or it can be a string
generator expression.
p : float, str, optional
The probability to create ``n`` synapses wherever the ``condition``
evaluates to true. Cannot be used with generator syntax for ``j``.
n : int, str, optional
The number of synapses to create per pre/post connection pair.
Defaults to 1.
skip_if_invalid : bool, optional
If set to True, rather than raising an error if you try to
create an invalid/out of range pair (i, j) it will just
quietly skip those synapses.
namespace : dict-like, optional
A namespace that will be used in addition to the group-specific
namespaces (if defined). If not specified, the locals
and globals around the run function will be used.
level : int, optional
How deep to go up the stack frame to look for the locals/global
(see ``namespace`` argument).
Examples
--------
>>> from brian2 import *
>>> import numpy as np
>>> G = NeuronGroup(10, 'dv/dt = -v / tau : 1', threshold='v>1', reset='v=0')
>>> S = Synapses(G, G, 'w:1', on_pre='v+=w')
>>> S.connect(condition='i != j') # all-to-all but no self-connections
>>> S.connect(i=0, j=0) # connect neuron 0 to itself
>>> S.connect(i=np.array([1, 2]), j=np.array([2, 1])) # connect 1->2 and 2->1
>>> S.connect() # connect all-to-all
>>> S.connect(condition='i != j', p=0.1) # Connect neurons with 10% probability, exclude self-connections
>>> S.connect(j='i', n=2) # Connect all neurons to themselves with 2 synapses
>>> S.connect(j='k for k in range(i+1)') # Connect neuron i to all j with 0<=j<=i
>>> S.connect(j='i+(-1)**k for k in range(2) if i>0 and i<N_pre-1') # connect neuron i to its neighbours if it has both neighbours
>>> S.connect(j='k for k in sample(N_post, p=i*1.0/(N_pre-1))') # neuron i connects to j with probability i/(N-1)
>>> S.connect(j='k for k in sample(N_post, size=i//2)') # Each neuron connects to i//2 other neurons (chosen randomly)
"""
# check types
self._verify_connect_argument_types(condition, i, j, n, p)
self._connect_called = True
# Get namespace information
if namespace is None:
namespace = get_local_namespace(level=level + 2)
try: # wrap everything to catch IndexError
# which connection case are we in?
# 1: Connection condition
if condition is None and i is None and j is None:
condition = True
if condition is not None:
if i is not None or j is not None:
raise ValueError("Cannot combine condition with i or j arguments")
if condition is False or condition == "False":
# Nothing to do
return
j = self._condition_to_generator_expression(condition, p, namespace)
self._add_synapses_generator(
j,
n,
skip_if_invalid=skip_if_invalid,
namespace=namespace,
level=level + 2,
over_presynaptic=True,
)
# 2: connection indices
elif (i is not None and j is not None) and not (
isinstance(i, str) or isinstance(j, str)
):
if skip_if_invalid:
raise ValueError("Can only use skip_if_invalid with string syntax")
i, j, n = self._verify_connect_array_arguments(i, j, n)
self._add_synapses_from_arrays(i, j, n, p, namespace=namespace)
# 3: Generator expression over post-synaptic cells (i='...')
elif isinstance(i, str):
i = self._finalize_generator_expression(i, j, p, "i", "j")
self._add_synapses_generator(
i,
n,
skip_if_invalid=skip_if_invalid,
namespace=namespace,
level=level + 2,
over_presynaptic=False,
)
# 4: Generator expression over pre-synaptic cells (i='...')
elif isinstance(j, str):
j = self._finalize_generator_expression(j, i, p, "j", "i")
self._add_synapses_generator(
j,
n,
skip_if_invalid=skip_if_invalid,
namespace=namespace,
level=level + 2,
over_presynaptic=True,
)
else:
raise ValueError(
"Must specify at least one of condition, i or j arguments"
)
except IndexError as e:
raise IndexError(
"Tried to create synapse indices outside valid "
"range. Original error message: " + str(e)
)
# Helper functions for Synapses.connect ↑
def _verify_connect_array_arguments(self, i, j, n):
if hasattr(i, "_indices"):
i = i._indices()
i = np.asarray(i)
if not np.issubdtype(i.dtype, np.signedinteger):
raise TypeError(
"Presynaptic indices have to be given as "
f"integers, are type {i.dtype} "
"instead."
)
if hasattr(j, "_indices"):
j = j._indices()
j = np.asarray(j)
if not np.issubdtype(j.dtype, np.signedinteger):
raise TypeError(
"Presynaptic indices can only be combined "
"with postsynaptic integer indices))"
)
if isinstance(n, str):
raise TypeError(
"Indices cannot be combined with a string"
"expression for n. Either use an "
"array/scalar for n, or a string "
"expression for the connections"
)
i, j, n = np.broadcast_arrays(i, j, n)
if i.ndim > 1:
raise ValueError("Can only use 1-dimensional indices")
return i, j, n
def _condition_to_generator_expression(self, condition, p, namespace):
if condition is True:
condition = "True"
# Check that the condition is a boolean expresion
identifiers = get_identifiers(condition)
variables = self.resolve_all(identifiers, namespace)
if not is_boolean_expression(condition, variables):
raise TypeError(f"Condition '{condition}' is not a boolean condition")
# Check the units (mostly to check for unit consistency within the condition)
dims = parse_expression_dimensions(condition, variables)
if dims is not DIMENSIONLESS:
# We should not get here normally
raise TypeError(f"Condition '{condition}' is not a boolean condition")
condition = word_substitute(condition, {"j": "_k"})
if not isinstance(p, str) and p == 1:
j = f"_k for _k in range(N_post) if {condition}"
else:
j = None
if isinstance(p, str):
identifiers = get_identifiers(p)
variables = self.resolve_all(identifiers, namespace)
dim = parse_expression_dimensions(p, variables)
if dim is not DIMENSIONLESS:
raise DimensionMismatchError(
"Expression for p should be dimensionless."
)
p_dep = self._expression_index_dependence(p, namespace=namespace)
if "_postsynaptic_idx" in p_dep or "_iterator_idx" in p_dep:
j = f"_k for _k in range(N_post) if ({condition}) and rand()<{p}"
if j is None:
j = f"_k for _k in sample(N_post, p={p}) if {condition}"
return j
def _verify_connect_argument_types(self, condition, i, j, n, p):
if condition is not None and not isinstance(condition, (bool, str)):
raise TypeError(
"condition argument must be bool or string. If you "
"want to connect based on indices, use "
"connect(i=..., j=...)."
)
if i is not None and not (
isinstance(i, (numbers.Integral, np.ndarray, Sequence))
or hasattr(i, "_indices")
):
raise TypeError("i argument must be int, array or string")
if j is not None and not (
isinstance(j, (numbers.Integral, np.ndarray, Sequence))
or hasattr(j, "_indices")
):
raise TypeError("j argument must be int, array or string")
# TODO: eliminate these restrictions
if not isinstance(p, (int, float, str)):
raise TypeError("p must be float or string")
if not isinstance(n, (int, str)):
raise TypeError("n must be int or string")
if isinstance(condition, str) and re.search(r"\bfor\b", condition):
raise ValueError(
"Generator expression given for condition, write "
f"connect(j='{condition}'...) instead of "
f"connect('{condition}'...)."
)
def check_variable_write(self, variable):
"""
Checks that `Synapses.connect` has been called before setting a
synaptic variable.
Parameters
----------
variable : `Variable`
The variable that the user attempts to set.
Raises
------
TypeError
If `Synapses.connect` has not been called yet.
"""
if not self._connect_called:
raise TypeError(
f"Cannot write to synaptic variable '{variable.name}', you "
"need to call connect(...) first"
)
def _resize(self, number):
if not isinstance(number, (numbers.Integral, np.integer)):
raise TypeError(f"Expected an integer number, got {type(number)} instead.")
if number < self.N:
raise ValueError(
f"Cannot reduce number of synapses, {number} < {len(self)}."
)
for variable in self._registered_variables:
variable.resize(number)
self.variables["N"].set_value(number)
def _update_synapse_numbers(self, old_num_synapses):
source_offset = self.variables["_source_offset"].get_value()
target_offset = self.variables["_target_offset"].get_value()
# This resizing is only necessary if we are connecting to/from synapses
post_with_offset = self.variables["N_post"].item() + target_offset
pre_with_offset = self.variables["N_pre"].item() + source_offset
self.variables["N_incoming"].resize(post_with_offset)
self.variables["N_outgoing"].resize(pre_with_offset)
N_outgoing = self.variables["N_outgoing"].get_value()
N_incoming = self.variables["N_incoming"].get_value()
synaptic_pre = self.variables["_synaptic_pre"].get_value()
synaptic_post = self.variables["_synaptic_post"].get_value()
# Update the number of total outgoing/incoming synapses per
# source/target neuron
N_outgoing[:] += np.bincount(
synaptic_pre[old_num_synapses:], minlength=len(N_outgoing)
)
N_incoming[:] += np.bincount(
synaptic_post[old_num_synapses:], minlength=len(N_incoming)
)
if self.multisynaptic_index is not None:
synapse_number_var = self.variables[self.multisynaptic_index]
synapse_number = synapse_number_var.get_value()
# Update the "synapse number" (number of synapses for the same
# source-target pair)
# We wrap pairs of source/target indices into a complex number for
# convenience
_source_target_pairs = synaptic_pre + synaptic_post * 1j
synapse_number[:] = calc_repeats(_source_target_pairs)
def register_variable(self, variable):
"""
Register a `DynamicArray` to be automatically resized when the size of
the indices change. Called automatically when a `SynapticArrayVariable`
specifier is created.
"""
if not hasattr(variable, "resize"):
raise TypeError(
f"Variable of type {type(variable)} does not have a resize "
"method, cannot register it with the synaptic "
"indices."
)
self._registered_variables.add(variable)
def unregister_variable(self, variable):
"""
Unregister a `DynamicArray` from the automatic resizing mechanism.
"""
self._registered_variables.remove(variable)
def _get_multisynaptic_indices(self):
template_kwds = {"multisynaptic_index": self.multisynaptic_index}
if self.multisynaptic_index is not None:
needed_variables = [self.multisynaptic_index]
else:
needed_variables = []
return template_kwds, needed_variables
def _add_synapses_from_arrays(self, sources, targets, n, p, namespace=None):
template_kwds, needed_variables = self._get_multisynaptic_indices()
variables = Variables(self)
sources = np.atleast_1d(sources).astype(np.int32)
targets = np.atleast_1d(targets).astype(np.int32)
# Check whether the values in sources/targets make sense
error_message = (
"The given {source_or_target} indices contain "
"values outside of the range [0, {max_value}] "
"allowed for the {source_or_target} group "
'"{group_name}"'
)
try:
for indices, source_or_target, group in [
(sources, "source", self.source),
(targets, "target", self.target),
]:
if np.max(indices) >= len(group) or np.min(indices) < 0:
raise IndexError(
error_message.format(
source_or_target=source_or_target,
max_value=len(group) - 1,
group_name=group.name,
)
)
except NotImplementedError:
logger.warn(
"Cannot check whether the indices given for the connect call are valid."
" This can happen in standalone mode when using indices to connect to"
" synapses that have been created with a connection pattern. You can"
" avoid this situation by either using a connection pattern or synaptic"
" indices in both connect calls.",
name_suffix="cannot_check_synapse_indices",
)
n = np.atleast_1d(n)
p = np.atleast_1d(p)
if not len(p) == 1 or p != 1:
use_connections = np.random.rand(len(sources)) < p
sources = sources[use_connections]
targets = targets[use_connections]
n = n[use_connections]
sources = sources.repeat(n)
targets = targets.repeat(n)
variables.add_array(
"sources", len(sources), dtype=np.int32, values=sources, read_only=True
)
variables.add_array(
"targets", len(targets), dtype=np.int32, values=targets, read_only=True
)
# These definitions are important to get the types right in C++
variables.add_auxiliary_variable("_real_sources", dtype=np.int32)
variables.add_auxiliary_variable("_real_targets", dtype=np.int32)
abstract_code = ""
if "_offset" in self.source.variables:
variables.add_reference("_source_offset", self.source, "_offset")
abstract_code += "_real_sources = sources + _source_offset\n"
else:
abstract_code += "_real_sources = sources\n"
if "_offset" in self.target.variables:
variables.add_reference("_target_offset", self.target, "_offset")
abstract_code += "_real_targets = targets + _target_offset\n"
else:
abstract_code += "_real_targets = targets"
logger.debug(
f"Creating synapses from group '{self.source.name}' to group "
f"'{self.target.name}', using pre-defined arrays)"
)
codeobj = create_runner_codeobj(
self,
abstract_code,
"synapses_create_array",
additional_variables=variables,
template_kwds=template_kwds,
needed_variables=needed_variables,
check_units=False,
run_namespace={},
)
codeobj()
def _expression_index_dependence(self, expr, namespace, additional_indices=None):
"""
Returns the set of synaptic indices that expr depends on
"""
nr = NodeRenderer()
expr = nr.render_expr(expr)
deps = set()
if additional_indices is None:
additional_indices = {}
identifiers = get_identifiers_recursively([expr], self.variables)
variables = self.resolve_all(
{name for name in identifiers if name not in additional_indices}, namespace
)
if any(getattr(var, "auto_vectorise", False) for var in variables.values()):
identifiers.add("_vectorisation_idx")
for varname in identifiers:
# Special handling of i and j -- they do not actually use pre-/
# postsynaptic indices (except for subgroups), they *are* the
# pre-/postsynaptic indices
if varname == "i":
deps.add("_presynaptic_idx")
elif varname == "j":
deps.add("_iterator_idx")
elif varname in additional_indices:
deps.add(additional_indices[varname])
else:
deps.add(self.variables.indices[varname])
if "0" in deps:
deps.remove("0")
return deps
def _add_synapses_generator(
self,
gen,
n,
skip_if_invalid=False,
over_presynaptic=True,
namespace=None,
level=0,
):
# Get the local namespace
if namespace is None:
namespace = get_local_namespace(level=level + 1)
parsed = parse_synapse_generator(gen)
self._check_parsed_synapses_generator(parsed, namespace)
# Referring to N_incoming/N_outgoing in the connect statement is
# ill-defined (see github issue #1227)
identifiers = get_identifiers_recursively([gen], self.variables)
for var in ["N_incoming", "N_outgoing"]:
if var in identifiers:
raise ValueError(f"The connect statement cannot refer to '{var}'.")
template_kwds, needed_variables = self._get_multisynaptic_indices()
template_kwds.update(parsed)
template_kwds["skip_if_invalid"] = skip_if_invalid
# To support both i='...' and j='...' syntax, we provide additional keywords
# to the template
outer_index = "i" if over_presynaptic else "j"
outer_index_size = "N_pre" if over_presynaptic else "N_post"
outer_index_array = "_pre_idx" if over_presynaptic else "_post_idx"
outer_index_offset = "_source_offset" if over_presynaptic else "_target_offset"
result_index = "j" if over_presynaptic else "i"
result_index_size = "N_post" if over_presynaptic else "N_pre"
target_idx = "_postsynaptic_idx" if over_presynaptic else "_presynaptic_idx"
result_index_array = "_post_idx" if over_presynaptic else "_pre_idx"
result_index_offset = "_target_offset" if over_presynaptic else "_source_offset"
result_index_name = "postsynaptic" if over_presynaptic else "presynaptic"
template_kwds.update(
{
"outer_index": outer_index,
"outer_index_size": outer_index_size,
"outer_index_array": outer_index_array,
"outer_index_offset": outer_index_offset,
"result_index": result_index,
"result_index_size": result_index_size,
"result_index_name": result_index_name,
"result_index_array": result_index_array,
"result_index_offset": result_index_offset,
}
)
abstract_code = {
"setup_iterator": "",
"generator_expr": "",
"create_cond": "",
"update": "",
}
additional_indices = {parsed["inner_variable"]: "_iterator_idx"}
setupiter = ""
for k, v in parsed["iterator_kwds"].items():
if v is not None and k != "sample_size":
deps = self._expression_index_dependence(
v, namespace=namespace, additional_indices=additional_indices
)
if f"_{result_index_name}_idx" in deps or "_iterator_idx" in deps:
raise ValueError(
f'Expression "{v}" depends on {result_index_name} '
"index or iterator"
)
setupiter += f"_iter_{k} = {v}\n"
# rand() in the if condition depends on _vectorisation_idx, but not if
# its in the range expression (handled above)
additional_indices["_vectorisation_idx"] = "_iterator_idx"
result_index_condition = False
result_index_used = False
if parsed["if_expression"] is not None:
deps = self._expression_index_dependence(
parsed["if_expression"],
namespace=namespace,
additional_indices=additional_indices,
)
if target_idx in deps:
result_index_condition = True
result_index_used = True
elif "_iterator_idx" in deps:
result_index_condition = True
template_kwds["result_index_condition"] = result_index_condition
template_kwds["result_index_used"] = result_index_used
abstract_code["setup_iterator"] += setupiter
abstract_code[
"generator_expr"
] += f"{outer_index_array} = _raw{outer_index_array} \n"
abstract_code["generator_expr"] += f'_{result_index} = {parsed["element"]}\n'
if result_index_condition:
abstract_code[
"create_cond"
] += f"{result_index_array} = _raw{result_index_array} \n"
if parsed["if_expression"] is not None:
abstract_code["create_cond"] += "_cond = " + parsed["if_expression"] + "\n"
abstract_code[
"update"
] += f"{result_index_array} = _raw{result_index_array} \n"
abstract_code["update"] += "_n = " + str(n) + "\n"
# This overwrites 'i' and 'j' in the synapses' variables dictionary
# This is necessary because in the context of synapse creation, i
# and j do not correspond to the sources/targets of the existing
# synapses but to all the possible sources/targets
variables = Variables(None)
# Will be set in the template
variables.add_auxiliary_variable("_i", dtype=np.int32)
variables.add_auxiliary_variable("_j", dtype=np.int32)
variables.add_auxiliary_variable("_iter_low", dtype=np.int32)
variables.add_auxiliary_variable("_iter_high", dtype=np.int32)
variables.add_auxiliary_variable("_iter_step", dtype=np.int32)
variables.add_auxiliary_variable("_iter_p")
variables.add_auxiliary_variable("_iter_size", dtype=np.int32)
variables.add_auxiliary_variable(parsed["inner_variable"], dtype=np.int32)
# Make sure that variables have the correct type in the code
variables.add_auxiliary_variable("_pre_idx", dtype=np.int32)
variables.add_auxiliary_variable("_post_idx", dtype=np.int32)
if parsed["if_expression"] is not None:
variables.add_auxiliary_variable("_cond", dtype=bool)
variables.add_auxiliary_variable("_n", dtype=np.int32)
if "_offset" in self.source.variables:
variables.add_reference("_source_offset", self.source, "_offset")
else:
variables.add_constant("_source_offset", value=0)
if "_offset" in self.target.variables:
variables.add_reference("_target_offset", self.target, "_offset")
else:
variables.add_constant("_target_offset", value=0)
variables.add_auxiliary_variable("_raw_pre_idx", dtype=np.int32)
variables.add_auxiliary_variable("_raw_post_idx", dtype=np.int32)
variable_indices = defaultdict(lambda: "_idx")
for varname in self.variables:
if self.variables.indices[varname] == "_presynaptic_idx":
variable_indices[varname] = "_raw_pre_idx"
elif self.variables.indices[varname] == "_postsynaptic_idx":
variable_indices[varname] = "_raw_post_idx"
if self.variables["i"] is self.variables["_synaptic_pre"]:
variables.add_subexpression("i", "_i", dtype=self.variables["i"].dtype)
if self.variables["j"] is self.variables["_synaptic_post"]:
variables.add_subexpression("j", "_j", dtype=self.variables["j"].dtype)
logger.debug(
f"Creating synapses from group '{self.source.name}' to group "
f"'{self.target.name}', using generator "
f"'{parsed['original_expression']}'"
)
codeobj = create_runner_codeobj(
self,
abstract_code,
"synapses_create_generator",
variable_indices=variable_indices,
additional_variables=variables,
template_kwds=template_kwds,
needed_variables=needed_variables,
check_units=False,
run_namespace=namespace,
)
codeobj()
def _check_parsed_synapses_generator(self, parsed, namespace):
"""
Type-check the parsed synapses generator. This function will raise a
TypeError if any of the arguments to the iterator function are of an
invalid type.
"""
if parsed["iterator_func"] == "range":
# We expect all arguments of the range function to be integers
for argname, arg in parsed["iterator_kwds"].items():
identifiers = get_identifiers(arg)
variables = self.resolve_all(
identifiers, run_namespace=namespace, user_identifiers=identifiers
)
annotated = brian_ast(arg, variables)
if annotated.dtype != "integer":
raise TypeError(
f"The '{argname}' argument of the range function was "
f"'{arg}', but it needs to be an integer."
)
def _finalize_generator_expression(
self,
generator_expression,
iteration_index,
p,
target_index_name,
iteration_index_name,
):
if iteration_index is not None:
raise TypeError(
f"Generator syntax for {target_index_name} cannot be combined with "
f"{iteration_index_name} argument"
)
if isinstance(p, str) or p != 1:
raise ValueError("Generator syntax cannot be combined with p argument")
if not re.search(r"\bfor\b", generator_expression):
if_split = generator_expression.split(" if ")
if len(if_split) == 1:
generator_expression = f"{generator_expression} for _ in range(1)"
elif len(if_split) == 2:
generator_expression = (
f"{if_split[0]} for _ in range(1) if {if_split[1]}"
)
else:
raise SyntaxError(
f"Error parsing expression '{generator_expression}'. "
"Expression must have generator "
"syntax, for example 'k for k in "
f"range({iteration_index_name}-10, {iteration_index_name}+10)'"
)
return generator_expression
|