1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
|
import json
import os
import platform
import socket
from collections import namedtuple
import numpy as np
import pytest
from brian2 import _cache_dirs_and_extensions, clear_cache, prefs
from brian2.codegen.codeobject import CodeObject
from brian2.codegen.cpp_prefs import compiler_supports_c99, get_compiler_and_args
from brian2.codegen.generators.cython_generator import CythonNodeRenderer
from brian2.codegen.optimisation import optimise_statements
from brian2.codegen.runtime.cython_rt import CythonCodeObject
from brian2.codegen.statements import Statement
from brian2.codegen.translation import (
analyse_identifiers,
get_identifiers_recursively,
make_statements,
parse_statement,
)
from brian2.core.functions import DEFAULT_CONSTANTS, DEFAULT_FUNCTIONS, Function
from brian2.core.variables import ArrayVariable, Constant, Subexpression, Variable
from brian2.devices.device import auto_target, device
from brian2.parsing.rendering import CPPNodeRenderer, NodeRenderer, NumpyNodeRenderer
from brian2.parsing.sympytools import str_to_sympy, sympy_to_str
from brian2.units import ms, second
from brian2.units.fundamentalunits import Unit
from brian2.utils.logger import catch_logs
FakeGroup = namedtuple("FakeGroup", ["variables"])
@pytest.mark.codegen_independent
def test_auto_target():
# very basic test that the "auto" codegen target is useable
assert issubclass(auto_target(), CodeObject)
@pytest.mark.codegen_independent
def test_analyse_identifiers():
"""
Test that the analyse_identifiers function works on a simple clear example.
"""
code = """
a = b+c
d = e+f
"""
known = {
"b": Variable(name="b"),
"c": Variable(name="c"),
"d": Variable(name="d"),
"g": Variable(name="g"),
}
defined, used_known, dependent = analyse_identifiers(code, known)
assert "a" in defined # There might be an additional constant added by the
# loop-invariant optimisation
assert used_known == {"b", "c", "d"}
assert dependent == {"e", "f"}
@pytest.mark.codegen_independent
def test_get_identifiers_recursively():
"""
Test finding identifiers including subexpressions.
"""
variables = {
"sub1": Subexpression(
name="sub1",
dtype=np.float32,
expr="sub2 * z",
owner=FakeGroup(variables={}),
device=None,
),
"sub2": Subexpression(
name="sub2",
dtype=np.float32,
expr="5 + y",
owner=FakeGroup(variables={}),
device=None,
),
"x": Variable(name="x"),
}
identifiers = get_identifiers_recursively(["_x = sub1 + x"], variables)
assert identifiers == {"x", "_x", "y", "z", "sub1", "sub2"}
@pytest.mark.codegen_independent
def test_write_to_subexpression():
variables = {
"a": Subexpression(
name="a",
dtype=np.float32,
owner=FakeGroup(variables={}),
device=None,
expr="2*z",
),
"z": Variable(name="z"),
}
# Writing to a subexpression is not allowed
code = "a = z"
with pytest.raises(SyntaxError):
make_statements(code, variables, np.float32)
@pytest.mark.codegen_independent
def test_repeated_subexpressions():
variables = {
"a": Subexpression(
name="a",
dtype=np.float32,
owner=FakeGroup(variables={}),
device=None,
expr="2*z",
),
"x": Variable(name="x"),
"y": Variable(name="y"),
"z": Variable(name="z"),
}
# subexpression a (referring to z) is used twice, but can be reused the
# second time (no change to z)
code = """
x = a
y = a
"""
scalar_stmts, vector_stmts = make_statements(code, variables, np.float32)
assert len(scalar_stmts) == 0
assert [stmt.var for stmt in vector_stmts] == ["a", "x", "y"]
assert vector_stmts[0].constant
code = """
x = a
z *= 2
"""
scalar_stmts, vector_stmts = make_statements(code, variables, np.float32)
assert len(scalar_stmts) == 0
assert [stmt.var for stmt in vector_stmts] == ["a", "x", "z"]
# Note that we currently do not mark the subexpression as constant in this
# case, because its use after the "z *=2" line would actually redefine it.
# Our algorithm is currently not smart enough to detect that it is actually
# not used afterwards
# a refers to z, therefore we have to redefine a after z changed, and a
# cannot be constant
code = """
x = a
z *= 2
y = a
"""
scalar_stmts, vector_stmts = make_statements(code, variables, np.float32)
assert len(scalar_stmts) == 0
assert [stmt.var for stmt in vector_stmts] == ["a", "x", "z", "a", "y"]
assert not any(stmt.constant for stmt in vector_stmts)
@pytest.mark.codegen_independent
def test_nested_subexpressions():
"""
This test checks that code translation works with nested subexpressions.
"""
code = """
x = a + b + c
c = 1
x = a + b + c
d = 1
x = a + b + c
"""
variables = {
"a": Subexpression(
name="a",
dtype=np.float32,
owner=FakeGroup(variables={}),
device=None,
expr="b*b+d",
),
"b": Subexpression(
name="b",
dtype=np.float32,
owner=FakeGroup(variables={}),
device=None,
expr="c*c*c",
),
"c": Variable(name="c"),
"d": Variable(name="d"),
}
scalar_stmts, vector_stmts = make_statements(code, variables, np.float32)
assert len(scalar_stmts) == 0
evalorder = "".join(stmt.var for stmt in vector_stmts)
# This is the order that variables ought to be evaluated in (note that
# previously this test did not expect the last "b" evaluation, because its
# value did not change (c was not changed). We have since removed this
# subexpression caching, because it did not seem to apply in practical
# use cases)
assert evalorder == "baxcbaxdbax"
@pytest.mark.codegen_independent
def test_apply_loop_invariant_optimisation():
variables = {
"v": Variable("v", scalar=False),
"w": Variable("w", scalar=False),
"dt": Constant("dt", dimensions=second.dim, value=0.1 * ms),
"tau": Constant("tau", dimensions=second.dim, value=10 * ms),
"exp": DEFAULT_FUNCTIONS["exp"],
}
statements = [
Statement("v", "=", "dt*w*exp(-dt/tau)/tau + v*exp(-dt/tau)", "", np.float32),
Statement("w", "=", "w*exp(-dt/tau)", "", np.float32),
]
scalar, vector = optimise_statements([], statements, variables)
# The optimisation should pull out at least exp(-dt / tau)
assert len(scalar) >= 1
assert np.issubdtype(scalar[0].dtype, np.floating)
assert scalar[0].var == "_lio_1"
assert len(vector) == 2
assert all("_lio_" in stmt.expr for stmt in vector)
@pytest.mark.codegen_independent
def test_apply_loop_invariant_optimisation_integer():
variables = {
"v": Variable("v", scalar=False),
"N": Constant("N", 10),
"b": Variable("b", scalar=True, dtype=int),
"c": Variable("c", scalar=True, dtype=int),
"d": Variable("d", scalar=True, dtype=int),
"y": Variable("y", scalar=True, dtype=float),
"z": Variable("z", scalar=True, dtype=float),
"w": Variable("w", scalar=True, dtype=float),
}
statements = [
Statement("v", "=", "v % (2*3*N)", "", np.float32),
# integer version doesn't get rewritten but float version does
Statement("a", ":=", "b//(c//d)", "", int),
Statement("x", ":=", "y/(z/w)", "", float),
]
scalar, vector = optimise_statements([], statements, variables)
assert len(scalar) == 3
assert np.issubdtype(scalar[0].dtype, np.signedinteger)
assert scalar[0].var == "_lio_1"
expr = scalar[0].expr.replace(" ", "")
assert expr == "6*N" or expr == "N*6"
assert np.issubdtype(scalar[1].dtype, np.signedinteger)
assert scalar[1].var == "_lio_2"
expr = scalar[1].expr.replace(" ", "")
assert expr == "b//(c//d)"
assert np.issubdtype(scalar[2].dtype, np.floating)
assert scalar[2].var == "_lio_3"
expr = scalar[2].expr.replace(" ", "")
assert expr == "(y*w)/z" or expr == "(w*y)/z"
@pytest.mark.codegen_independent
def test_apply_loop_invariant_optimisation_boolean():
variables = {
"v1": Variable("v1", scalar=False),
"v2": Variable("v2", scalar=False),
"N": Constant("N", 10),
"b": Variable("b", scalar=True, dtype=bool),
"c": Variable("c", scalar=True, dtype=bool),
"int": DEFAULT_FUNCTIONS["int"],
"foo": Function(
lambda x: None,
arg_units=[Unit(1)],
return_unit=Unit(1),
arg_types=["boolean"],
return_type="float",
stateless=False,
),
}
# The calls for "foo" cannot be pulled out, since foo is marked as stateful
statements = [
Statement("v1", "=", "1.0*int(b and c)", "", np.float32),
Statement("v1", "=", "1.0*foo(b and c)", "", np.float32),
Statement("v2", "=", "int(not b and True)", "", np.float32),
Statement("v2", "=", "foo(not b and True)", "", np.float32),
]
scalar, vector = optimise_statements([], statements, variables)
assert len(scalar) == 4
assert scalar[0].expr == "1.0 * int(b and c)"
assert scalar[1].expr == "b and c"
assert scalar[2].expr == "int((not b) and True)"
assert scalar[3].expr == "(not b) and True"
assert len(vector) == 4
assert vector[0].expr == "_lio_1"
assert vector[1].expr == "foo(_lio_2)"
assert vector[2].expr == "_lio_3"
assert vector[3].expr == "foo(_lio_4)"
@pytest.mark.codegen_independent
def test_apply_loop_invariant_optimisation_no_optimisation():
variables = {
"v1": Variable("v1", scalar=False),
"v2": Variable("v2", scalar=False),
"N": Constant("N", 10),
"s1": Variable("s1", scalar=True, dtype=float),
"s2": Variable("s2", scalar=True, dtype=float),
"rand": DEFAULT_FUNCTIONS["rand"],
}
statements = [
# This should not be simplified to 0!
Statement("v1", "=", "rand() - rand()", "", float),
Statement("v1", "=", "3*rand() - 3*rand()", "", float),
Statement("v1", "=", "3*rand() - ((1+2)*rand())", "", float),
# This should not pull out rand()*N
Statement("v1", "=", "s1*rand()*N", "", float),
Statement("v1", "=", "s2*rand()*N", "", float),
# This is not important mathematically, but it would change the numbers
# that are generated
Statement("v1", "=", "0*rand()*N", "", float),
Statement("v1", "=", "0/rand()*N", "", float),
]
scalar, vector = optimise_statements([], statements, variables)
for vs in vector[:3]:
assert (
vs.expr.count("rand()") == 2
), f"Expression should still contain two rand() calls, but got {str(vs)}"
for vs in vector[3:]:
assert (
vs.expr.count("rand()") == 1
), f"Expression should still contain a rand() call, but got {str(vs)}"
@pytest.mark.codegen_independent
def test_apply_loop_invariant_optimisation_simplification():
variables = {
"v1": Variable("v1", scalar=False),
"v2": Variable("v2", scalar=False),
"i1": Variable("i1", scalar=False, dtype=int),
"N": Constant("N", 10),
}
statements = [
# Should be simplified to 0.0
Statement("v1", "=", "v1 - v1", "", float),
Statement("v1", "=", "N*v1 - N*v1", "", float),
Statement("v1", "=", "v1*N * 0", "", float),
Statement("v1", "=", "v1 * 0", "", float),
Statement("v1", "=", "v1 * 0.0", "", float),
Statement("v1", "=", "0.0 / (v1*N)", "", float),
# Should be simplified to 0
Statement("i1", "=", "i1*N * 0", "", int),
Statement("i1", "=", "0 * i1", "", int),
Statement("i1", "=", "0 * i1*N", "", int),
Statement("i1", "=", "i1 * 0", "", int),
# Should be simplified to v1*N
Statement("v2", "=", "0 + v1*N", "", float),
Statement("v2", "=", "v1*N + 0.0", "", float),
Statement("v2", "=", "v1*N - 0", "", float),
Statement("v2", "=", "v1*N - 0.0", "", float),
Statement("v2", "=", "1 * v1*N", "", float),
Statement("v2", "=", "1.0 * v1*N", "", float),
Statement("v2", "=", "v1*N / 1.0", "", float),
Statement("v2", "=", "v1*N / 1", "", float),
# Should be simplified to i1
Statement("i1", "=", "i1*1", "", int),
Statement("i1", "=", "i1//1", "", int),
Statement("i1", "=", "i1+0", "", int),
Statement("i1", "=", "0+i1", "", int),
Statement("i1", "=", "i1-0", "", int),
# Should *not* be simplified (because it would change the type,
# important for integer division, for example)
Statement("v1", "=", "i1*1.0", "", float),
Statement("v1", "=", "1.0*i1", "", float),
Statement("v1", "=", "i1/1.0", "", float),
Statement("v1", "=", "i1/1", "", float),
Statement("v1", "=", "i1+0.0", "", float),
Statement("v1", "=", "0.0+i1", "", float),
Statement("v1", "=", "i1-0.0", "", float),
## Should *not* be simplified, flooring division by 1 changes the value
Statement("v1", "=", "v2//1.0", "", float),
Statement("i1", "=", "i1//1.0", "", float), # changes type
]
scalar, vector = optimise_statements([], statements, variables)
assert len(scalar) == 0
for s in vector[:6]:
assert s.expr == "0.0"
for s in vector[6:10]:
assert s.expr == "0", s.expr # integer
for s in vector[10:18]:
expr = s.expr.replace(" ", "")
assert expr == "v1*N" or expr == "N*v1"
for s in vector[18:23]:
expr = s.expr.replace(" ", "")
assert expr == "i1"
for s in vector[23:27]:
expr = s.expr.replace(" ", "")
assert expr == "1.0*i1" or expr == "i1*1.0" or expr == "i1/1.0"
for s in vector[27:30]:
expr = s.expr.replace(" ", "")
assert expr == "0.0+i1" or expr == "i1+0.0"
for s in vector[30:31]:
expr = s.expr.replace(" ", "")
assert expr == "v2//1.0" or expr == "v2//1"
for s in vector[31:]:
expr = s.expr.replace(" ", "")
assert expr == "i1//1.0"
@pytest.mark.codegen_independent
def test_apply_loop_invariant_optimisation_constant_evaluation():
variables = {
"v1": Variable("v1", scalar=False),
"v2": Variable("v2", scalar=False),
"i1": Variable("i1", scalar=False, dtype=int),
"N": Constant("N", 10),
"s1": Variable("s1", scalar=True, dtype=float),
"s2": Variable("s2", scalar=True, dtype=float),
"exp": DEFAULT_FUNCTIONS["exp"],
}
statements = [
Statement("v1", "=", "v1 * (1 + 2 + 3)", "", float),
Statement("v1", "=", "exp(N)*v1", "", float),
Statement("v1", "=", "exp(0)*v1", "", float),
]
scalar, vector = optimise_statements([], statements, variables)
# exp(N) should be pulled out of the vector statements, the rest should be
# evaluated in place
assert len(scalar) == 1
assert scalar[0].expr == "exp(N)"
assert len(vector) == 3
expr = vector[0].expr.replace(" ", "")
assert expr == "_lio_1*v1" or "v1*_lio_1"
expr = vector[1].expr.replace(" ", "")
assert expr == "6.0*v1" or "v1*6.0"
assert vector[2].expr == "v1"
@pytest.mark.codegen_independent
def test_automatic_augmented_assignments():
# We test that statements that could be rewritten as augmented assignments
# are correctly rewritten (using sympy to test for symbolic equality)
variables = {
"x": ArrayVariable("x", owner=None, size=10, device=device),
"y": ArrayVariable("y", owner=None, size=10, device=device),
"z": ArrayVariable("y", owner=None, size=10, device=device),
"b": ArrayVariable("b", owner=None, size=10, dtype=bool, device=device),
"clip": DEFAULT_FUNCTIONS["clip"],
"inf": DEFAULT_CONSTANTS["inf"],
}
statements = [
# examples that should be rewritten
# Note that using our approach, we will never get -= or /= but always
# the equivalent += or *= statements
("x = x + 1.0", "x += 1.0"),
("x = 2.0 * x", "x *= 2.0"),
("x = x - 3.0", "x += -3.0"),
("x = x/2.0", "x *= 0.5"),
("x = y + (x + 1.0)", "x += y + 1.0"),
("x = x + x", "x *= 2"),
("x = x + y + z", "x += y + z"),
("x = x + y + z", "x += y + z"),
# examples that should not be rewritten
("x = 1.0/x", "x = 1.0/x"),
("x = 1.0", "x = 1.0"),
("x = 2.0*(x + 1.0)", "x = 2.0*(x + 1.0)"),
("x = clip(x + y, 0.0, inf)", "x = clip(x + y, 0.0, inf)"),
("b = b or False", "b = b or False"),
]
for orig, rewritten in statements:
scalar, vector = make_statements(orig, variables, np.float32)
try: # we augment the assertion error with the original statement
assert (
len(scalar) == 0
), f"Did not expect any scalar statements but got {str(scalar)}"
assert (
len(vector) == 1
), f"Did expect a single statement but got {str(vector)}"
statement = vector[0]
expected_var, expected_op, expected_expr, _ = parse_statement(rewritten)
assert (
expected_var == statement.var
), f"expected write to variable {expected_var}, not to {statement.var}"
assert (
expected_op == statement.op
), f"expected operation {expected_op}, not {statement.op}"
# Compare the two expressions using sympy to allow for different order etc.
sympy_expected = str_to_sympy(expected_expr)
sympy_actual = str_to_sympy(statement.expr)
assert sympy_expected == sympy_actual, (
f"RHS expressions '{sympy_to_str(sympy_expected)}' and"
f" '{sympy_to_str(sympy_actual)}' are not identical"
)
except AssertionError as ex:
raise AssertionError(
f"Transformation for statement '{orig}' gave an unexpected result: {ex}"
)
@pytest.mark.codegen_independent
@pytest.mark.parametrize(
"s",
[
"x, y = 3",
"x * y",
"x = ",
"x.a = 3",
"x++",
"x[0] = 3",
"dx/dt = -v / tau",
"v == 3*mV",
],
)
def test_incorrect_statements(s):
with pytest.raises(ValueError):
parse_statement(s)
def test_clear_cache():
target = prefs.codegen.target
if target == "numpy":
assert "numpy" not in _cache_dirs_and_extensions
with pytest.raises(ValueError):
clear_cache("numpy")
else:
assert target in _cache_dirs_and_extensions
cache_dir, _ = _cache_dirs_and_extensions[target]
# Create a file that should not be there
fname = os.path.join(cache_dir, "some_file.py")
open(fname, "w").close()
# clear_cache should refuse to clear the directory
with pytest.raises(IOError):
clear_cache(target)
os.remove(fname)
@pytest.mark.skipif(
platform.system() == "Windows",
reason="CC and CXX variables are ignored on Windows.",
)
def test_compiler_error():
# In particular on OSX with clang in a conda environment, compilation might fail.
# Switching to a system gcc might help in such cases. Make sure that the error
# message mentions that.
old_CC = os.environ.get("CC", None)
old_CXX = os.environ.get("CXX", None)
os.environ.update({"CC": "non-existing-compiler", "CXX": "non-existing-compiler++"})
try:
with catch_logs() as l:
assert not CythonCodeObject.is_available()
assert len(l) > 0 # There are additional warnings about compiler flags
last_warning = l[-1]
assert last_warning[1].endswith(".failed_compile_test")
assert "CC" in last_warning[2] and "CXX" in last_warning[2]
finally:
if old_CC:
os.environ["CC"] = old_CC
else:
del os.environ["CC"]
if old_CXX:
os.environ["CXX"] = old_CXX
else:
del os.environ["CXX"]
def test_compiler_c99():
# On a user's computer, we do not know whether the compiler actually
# has C99 support, so we just check whether the test does not raise an
# error
# The compiler check previously created spurious '-.o' files (see #1348)
if os.path.exists("-.o"):
os.remove("-.o")
c99_support = compiler_supports_c99()
assert not os.path.exists("-.o")
# On our Azure test server we know that the compilers support C99
if os.environ.get("AGENT_OS", ""):
assert c99_support
def test_cpp_flags_support():
from distutils.ccompiler import get_default_compiler
from brian2.codegen.cpp_prefs import _compiler_flag_compatibility
_compiler_flag_compatibility.clear() # make sure cache is empty
compiler = get_default_compiler()
if compiler == "msvc":
pytest.skip("No flag support check for msvc")
old_prefs = prefs["codegen.cpp.extra_compile_args"]
# Should always be supported
prefs["codegen.cpp.extra_compile_args"] = ["-w"]
_, compile_args = get_compiler_and_args()
assert compile_args == prefs["codegen.cpp.extra_compile_args"]
# Should never be supported and raise a warning
prefs["codegen.cpp.extra_compile_args"] = ["-invalidxyz"]
with catch_logs() as l:
_, compile_args = get_compiler_and_args()
assert len(l) == 1 and l[0][0] == "WARNING"
assert compile_args == []
prefs["codegen.cpp.extra_compile_args"] = old_prefs
@pytest.mark.skipif(
platform.system() != "Windows", reason="MSVC flags are only relevant on Windows"
)
@pytest.mark.skipif(
prefs["codegen.target"] == "numpy", reason="Test only relevant for compiled code"
)
def test_msvc_flags():
# Very basic test that flags are stored to disk
import brian2.codegen.cpp_prefs as cpp_prefs
user_dir = os.path.join(os.path.expanduser("~"), ".brian")
flag_file = os.path.join(user_dir, "cpu_flags.txt")
assert len(cpp_prefs.msvc_arch_flag)
assert os.path.exists(flag_file)
with open(flag_file, encoding="utf-8") as f:
previously_stored_flags = json.load(f)
hostname = socket.gethostname()
assert hostname in previously_stored_flags
assert len(previously_stored_flags[hostname])
@pytest.mark.codegen_independent
@pytest.mark.parametrize(
"renderer",
[
NodeRenderer(),
NumpyNodeRenderer(),
CythonNodeRenderer(),
CPPNodeRenderer(),
],
)
def test_number_rendering(renderer):
import ast
for number in [0.5, np.float32(0.5), np.float64(0.5)]:
# In numpy 2.0, repr(np.float64(0.5)) is 'np.float64(0.5)'
node = ast.Constant(value=number)
assert renderer.render_node(node) == "0.5"
if __name__ == "__main__":
test_auto_target()
test_analyse_identifiers()
test_get_identifiers_recursively()
test_write_to_subexpression()
test_repeated_subexpressions()
test_nested_subexpressions()
test_apply_loop_invariant_optimisation()
test_apply_loop_invariant_optimisation_integer()
test_apply_loop_invariant_optimisation_boolean()
test_apply_loop_invariant_optimisation_no_optimisation()
test_apply_loop_invariant_optimisation_simplification()
test_apply_loop_invariant_optimisation_constant_evaluation()
test_automatic_augmented_assignments()
test_clear_cache()
test_msvc_flags()
|