1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
|
import numpy as np
import pytest
from numpy.testing import assert_equal
from brian2.memory.dynamicarray import DynamicArray1D
from brian2.synapses.spikequeue import SpikeQueue
from brian2.units.stdunits import ms
def create_all_to_all(N, dt):
"""
Return a tuple containing `synapses` and `delays` in the form that is needed
for the `SpikeQueue` initializer.
Every synapse has a delay depending on the presynaptic neuron.
"""
data = np.repeat(np.arange(N, dtype=np.int32), N)
delays = DynamicArray1D(data.shape, dtype=np.float64)
delays[:] = data * dt
synapses = data
return synapses, delays
def create_one_to_one(N, dt):
"""
Return a tuple containing `synapses` and `delays` in the form that is needed
for the `SpikeQueue` initializer.
Every synapse has a delay depending on the presynaptic neuron.
"""
data = np.arange(N, dtype=np.int32)
delays = DynamicArray1D(data.shape, dtype=np.float64)
delays[:] = data * dt
synapses = data
return synapses, delays
@pytest.mark.codegen_independent
def test_spikequeue():
N = 100
dt = float(0.1 * ms)
synapses, delays = create_one_to_one(N, dt)
queue = SpikeQueue(source_start=0, source_end=N)
queue.prepare(delays[:], dt, synapses)
queue.push(np.arange(N, dtype=np.int32))
for i in range(N):
assert_equal(queue.peek(), np.array([i]))
queue.advance()
for i in range(N):
assert_equal(queue.peek(), np.array([]))
queue.advance()
synapses, delays = create_all_to_all(N, dt)
queue = SpikeQueue(source_start=0, source_end=N)
queue.prepare(delays[:], dt, synapses)
queue.push(np.arange(N * N, dtype=np.int32))
for i in range(N):
assert_equal(queue.peek(), i * N + np.arange(N))
queue.advance()
for i in range(N):
assert_equal(queue.peek(), np.array([]))
queue.advance()
if __name__ == "__main__":
test_spikequeue()
|