1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
"""
Unit-aware replacements for numpy functions.
"""
from functools import wraps
import numpy as np
from .fundamentalunits import (
DIMENSIONLESS,
Quantity,
check_units,
fail_for_dimension_mismatch,
is_dimensionless,
wrap_function_dimensionless,
wrap_function_keep_dimensions,
wrap_function_remove_dimensions,
)
__all__ = [
"log",
"log10",
"exp",
"expm1",
"log1p",
"exprel",
"sin",
"cos",
"tan",
"arcsin",
"arccos",
"arctan",
"sinh",
"cosh",
"tanh",
"arcsinh",
"arccosh",
"arctanh",
"diagonal",
"ravel",
"trace",
"dot",
"where",
"ones_like",
"zeros_like",
"arange",
"linspace",
"ptp",
]
def where(condition, *args, **kwds): # pylint: disable=C0111
if len(args) == 0:
# nothing to do
return np.where(condition, *args, **kwds)
elif len(args) == 2:
# check that x and y have the same dimensions
fail_for_dimension_mismatch(
args[0], args[1], "x and y need to have the same dimensions"
)
if is_dimensionless(args[0]):
return np.where(condition, *args, **kwds)
else:
# as both arguments have the same unit, just use the first one's
dimensionless_args = [np.asarray(arg) for arg in args]
return Quantity.with_dimensions(
np.where(condition, *dimensionless_args), args[0].dimensions
)
else:
# illegal number of arguments, let numpy take care of this
return np.where(condition, *args, **kwds)
where.__doc__ = np.where.__doc__
where._do_not_run_doctests = True
# Functions that work on dimensionless quantities only
sin = wrap_function_dimensionless(np.sin)
sinh = wrap_function_dimensionless(np.sinh)
arcsin = wrap_function_dimensionless(np.arcsin)
arcsinh = wrap_function_dimensionless(np.arcsinh)
cos = wrap_function_dimensionless(np.cos)
cosh = wrap_function_dimensionless(np.cosh)
arccos = wrap_function_dimensionless(np.arccos)
arccosh = wrap_function_dimensionless(np.arccosh)
tan = wrap_function_dimensionless(np.tan)
tanh = wrap_function_dimensionless(np.tanh)
arctan = wrap_function_dimensionless(np.arctan)
arctanh = wrap_function_dimensionless(np.arctanh)
log = wrap_function_dimensionless(np.log)
log10 = wrap_function_dimensionless(np.log10)
exp = wrap_function_dimensionless(np.exp)
expm1 = wrap_function_dimensionless(np.expm1)
log1p = wrap_function_dimensionless(np.log1p)
ptp = wrap_function_keep_dimensions(np.ptp)
@check_units(x=1, result=1)
def exprel(x):
x = np.asarray(x)
if issubclass(x.dtype.type, np.integer):
result = np.empty_like(x, dtype=np.float64)
else:
result = np.empty_like(x)
# Following the implementation of exprel from scipy.special
if x.shape == ():
if np.abs(x) < 1e-16:
return 1.0
elif x > 717:
return np.inf
else:
return np.expm1(x) / x
else:
small = np.abs(x) < 1e-16
big = x > 717
in_between = np.logical_not(small | big)
result[small] = 1.0
result[big] = np.inf
result[in_between] = np.expm1(x[in_between]) / x[in_between]
return result
ones_like = wrap_function_remove_dimensions(np.ones_like)
zeros_like = wrap_function_remove_dimensions(np.zeros_like)
def wrap_function_to_method(func):
"""
Wraps a function so that it calls the corresponding method on the
Quantities object (if called with a Quantities object as the first
argument). All other arguments are left untouched.
"""
@wraps(func)
def f(x, *args, **kwds): # pylint: disable=C0111
if isinstance(x, Quantity):
return getattr(x, func.__name__)(*args, **kwds)
else:
# no need to wrap anything
return func(x, *args, **kwds)
f.__doc__ = func.__doc__
f.__name__ = func.__name__
f._do_not_run_doctests = True
return f
@wraps(np.arange)
def arange(*args, **kwargs):
# arange has a bit of a complicated argument structure unfortunately
# we leave the actual checking of the number of arguments to numpy, though
# default values
start = kwargs.pop("start", 0)
step = kwargs.pop("step", 1)
stop = kwargs.pop("stop", None)
if len(args) == 1:
if stop is not None:
raise TypeError("Duplicate definition of 'stop'")
stop = args[0]
elif len(args) == 2:
if start != 0:
raise TypeError("Duplicate definition of 'start'")
if stop is not None:
raise TypeError("Duplicate definition of 'stop'")
start, stop = args
elif len(args) == 3:
if start != 0:
raise TypeError("Duplicate definition of 'start'")
if stop is not None:
raise TypeError("Duplicate definition of 'stop'")
if step != 1:
raise TypeError("Duplicate definition of 'step'")
start, stop, step = args
elif len(args) > 3:
raise TypeError("Need between 1 and 3 non-keyword arguments")
if stop is None:
raise TypeError("Missing stop argument.")
fail_for_dimension_mismatch(
start,
stop,
error_message=(
"Start value {start} and stop value {stop} have to have the same units."
),
start=start,
stop=stop,
)
fail_for_dimension_mismatch(
stop,
step,
error_message=(
"Stop value {stop} and step value {step} have to have the same units."
),
stop=stop,
step=step,
)
dim = getattr(stop, "dim", DIMENSIONLESS)
# start is a position-only argument in numpy 2.0
# https://numpy.org/devdocs/release/2.0.0-notes.html#arange-s-start-argument-is-positional-only
# TODO: check whether this is still the case in the final release
if start == 0:
return Quantity(
np.arange(
stop=np.asarray(stop),
step=np.asarray(step),
**kwargs,
),
dim=dim,
)
else:
return Quantity(
np.arange(
np.asarray(start),
stop=np.asarray(stop),
step=np.asarray(step),
**kwargs,
),
dim=dim,
)
arange._do_not_run_doctests = True
@wraps(np.linspace)
def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None):
fail_for_dimension_mismatch(
start,
stop,
error_message=(
"Start value {start} and stop value {stop} have to have the same units."
),
start=start,
stop=stop,
)
dim = getattr(start, "dim", DIMENSIONLESS)
result = np.linspace(
np.asarray(start),
np.asarray(stop),
num=num,
endpoint=endpoint,
retstep=retstep,
dtype=dtype,
)
return Quantity(result, dim=dim)
linspace._do_not_run_doctests = True
# these functions discard subclass info -- maybe a bug in numpy?
ravel = wrap_function_to_method(np.ravel)
diagonal = wrap_function_to_method(np.diagonal)
trace = wrap_function_to_method(np.trace)
dot = wrap_function_to_method(np.dot)
# This is a very minor detail: setting the __module__ attribute allows the
# automatic reference doc generation mechanism to attribute the functions to
# this module. Maybe also helpful for IDEs and other code introspection tools.
sin.__module__ = __name__
sinh.__module__ = __name__
arcsin.__module__ = __name__
arcsinh.__module__ = __name__
cos.__module__ = __name__
cosh.__module__ = __name__
arccos.__module__ = __name__
arccosh.__module__ = __name__
tan.__module__ = __name__
tanh.__module__ = __name__
arctan.__module__ = __name__
arctanh.__module__ = __name__
log.__module__ = __name__
exp.__module__ = __name__
ravel.__module__ = __name__
diagonal.__module__ = __name__
trace.__module__ = __name__
dot.__module__ = __name__
arange.__module__ = __name__
linspace.__module__ = __name__
|