File: Brunel_2000.py

package info (click to toggle)
brian 2.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,872 kB
  • sloc: python: 51,820; cpp: 2,033; makefile: 108; sh: 72
file content (154 lines) | stat: -rwxr-xr-x 3,829 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#!/usr/bin/env python3
"""
Fig. 8 from:

Brunel, N. Dynamics of Sparsely Connected Networks of Excitatory and
Inhibitory Spiking Neurons. J Comput Neurosci 8, 183–208
(2000). https://doi.org/10.1023/A:1008925309027

Inspired by http://neuronaldynamics.epfl.ch

Sebastian Schmitt, 2022
"""

import random
from brian2 import *
import matplotlib.pyplot as plt


def sim(g, nu_ext_over_nu_thr, sim_time, ax_spikes, ax_rates, rate_tick_step):
    """
    g -- relative inhibitory to excitatory synaptic strength
    nu_ext_over_nu_thr -- ratio of external stimulus rate to threshold rate
    sim_time -- simulation time
    ax_spikes -- matplotlib axes to plot spikes on
    ax_rates -- matplotlib axes to plot rates on
    rate_tick_step -- step size for rate axis ticks
    """

    # network parameters
    N_E = 10000
    gamma = 0.25
    N_I = round(gamma * N_E)
    N = N_E + N_I
    epsilon = 0.1
    C_E = epsilon * N_E
    C_ext = C_E

    # neuron parameters
    tau = 20 * ms
    theta = 20 * mV
    V_r = 10 * mV
    tau_rp = 2 * ms

    # synapse parameters
    J = 0.1 * mV
    D = 1.5 * ms

    # external stimulus
    nu_thr = theta / (J * C_E * tau)

    defaultclock.dt = 0.1 * ms

    neurons = NeuronGroup(N,
                          """
                          dv/dt = -v/tau : volt (unless refractory)
                          """,
                          threshold="v > theta",
                          reset="v = V_r",
                          refractory=tau_rp,
                          method="exact",
    )

    excitatory_neurons = neurons[:N_E]
    inhibitory_neurons = neurons[N_E:]

    exc_synapses = Synapses(excitatory_neurons, target=neurons, on_pre="v += J", delay=D)
    exc_synapses.connect(p=epsilon)

    inhib_synapses = Synapses(inhibitory_neurons, target=neurons, on_pre="v += -g*J", delay=D)
    inhib_synapses.connect(p=epsilon)

    nu_ext = nu_ext_over_nu_thr * nu_thr

    external_poisson_input = PoissonInput(
        target=neurons, target_var="v", N=C_ext, rate=nu_ext, weight=J
    )

    rate_monitor = PopulationRateMonitor(neurons)

    # record from the first 50 excitatory neurons
    spike_monitor = SpikeMonitor(neurons[:50])

    run(sim_time, report='text')

    ax_spikes.plot(spike_monitor.t / ms, spike_monitor.i, "|")
    ax_rates.plot(rate_monitor.t / ms, rate_monitor.rate / Hz)

    ax_spikes.set_yticks([])

    ax_spikes.set_xlim(*params["t_range"])
    ax_rates.set_xlim(*params["t_range"])

    ax_rates.set_ylim(*params["rate_range"])
    ax_rates.set_xlabel("t [ms]")

    ax_rates.set_yticks(
        np.arange(
            params["rate_range"][0], params["rate_range"][1] + rate_tick_step, rate_tick_step
        )
    )

    plt.subplots_adjust(hspace=0)


parameters = {
    "A": {
        "g": 3,
        "nu_ext_over_nu_thr": 2,
        "t_range": [500, 600],
        "rate_range": [0, 6000],
        "rate_tick_step": 1000,
    },
    "B": {
        "g": 6,
        "nu_ext_over_nu_thr": 4,
        "t_range": [1000, 1200],
        "rate_range": [0, 400],
        "rate_tick_step": 100,
    },
    "C": {
        "g": 5,
        "nu_ext_over_nu_thr": 2,
        "t_range": [1000, 1200],
        "rate_range": [0, 200],
        "rate_tick_step": 50,
    },
    "D": {
        "g": 4.5,
        "nu_ext_over_nu_thr": 0.9,
        "t_range": [1000, 1200],
        "rate_range": [0, 250],
        "rate_tick_step": 50,
    },
}

for panel, params in parameters.items():

    fig = plt.figure(figsize=(4, 5))
    fig.suptitle(panel)

    gs = fig.add_gridspec(ncols=1, nrows=2, height_ratios=[4, 1])

    ax_spikes, ax_rates = gs.subplots(sharex="col")

    sim(
        params["g"],
        params["nu_ext_over_nu_thr"],
        params["t_range"][1] * ms,
        ax_spikes,
        ax_rates,
        params["rate_tick_step"],
    )

plt.show()