1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
#!/usr/bin/env python3
"""
Fig. 8 from:
Brunel, N. Dynamics of Sparsely Connected Networks of Excitatory and
Inhibitory Spiking Neurons. J Comput Neurosci 8, 183–208
(2000). https://doi.org/10.1023/A:1008925309027
Inspired by http://neuronaldynamics.epfl.ch
Sebastian Schmitt, 2022
"""
import random
from brian2 import *
import matplotlib.pyplot as plt
def sim(g, nu_ext_over_nu_thr, sim_time, ax_spikes, ax_rates, rate_tick_step):
"""
g -- relative inhibitory to excitatory synaptic strength
nu_ext_over_nu_thr -- ratio of external stimulus rate to threshold rate
sim_time -- simulation time
ax_spikes -- matplotlib axes to plot spikes on
ax_rates -- matplotlib axes to plot rates on
rate_tick_step -- step size for rate axis ticks
"""
# network parameters
N_E = 10000
gamma = 0.25
N_I = round(gamma * N_E)
N = N_E + N_I
epsilon = 0.1
C_E = epsilon * N_E
C_ext = C_E
# neuron parameters
tau = 20 * ms
theta = 20 * mV
V_r = 10 * mV
tau_rp = 2 * ms
# synapse parameters
J = 0.1 * mV
D = 1.5 * ms
# external stimulus
nu_thr = theta / (J * C_E * tau)
defaultclock.dt = 0.1 * ms
neurons = NeuronGroup(N,
"""
dv/dt = -v/tau : volt (unless refractory)
""",
threshold="v > theta",
reset="v = V_r",
refractory=tau_rp,
method="exact",
)
excitatory_neurons = neurons[:N_E]
inhibitory_neurons = neurons[N_E:]
exc_synapses = Synapses(excitatory_neurons, target=neurons, on_pre="v += J", delay=D)
exc_synapses.connect(p=epsilon)
inhib_synapses = Synapses(inhibitory_neurons, target=neurons, on_pre="v += -g*J", delay=D)
inhib_synapses.connect(p=epsilon)
nu_ext = nu_ext_over_nu_thr * nu_thr
external_poisson_input = PoissonInput(
target=neurons, target_var="v", N=C_ext, rate=nu_ext, weight=J
)
rate_monitor = PopulationRateMonitor(neurons)
# record from the first 50 excitatory neurons
spike_monitor = SpikeMonitor(neurons[:50])
run(sim_time, report='text')
ax_spikes.plot(spike_monitor.t / ms, spike_monitor.i, "|")
ax_rates.plot(rate_monitor.t / ms, rate_monitor.rate / Hz)
ax_spikes.set_yticks([])
ax_spikes.set_xlim(*params["t_range"])
ax_rates.set_xlim(*params["t_range"])
ax_rates.set_ylim(*params["rate_range"])
ax_rates.set_xlabel("t [ms]")
ax_rates.set_yticks(
np.arange(
params["rate_range"][0], params["rate_range"][1] + rate_tick_step, rate_tick_step
)
)
plt.subplots_adjust(hspace=0)
parameters = {
"A": {
"g": 3,
"nu_ext_over_nu_thr": 2,
"t_range": [500, 600],
"rate_range": [0, 6000],
"rate_tick_step": 1000,
},
"B": {
"g": 6,
"nu_ext_over_nu_thr": 4,
"t_range": [1000, 1200],
"rate_range": [0, 400],
"rate_tick_step": 100,
},
"C": {
"g": 5,
"nu_ext_over_nu_thr": 2,
"t_range": [1000, 1200],
"rate_range": [0, 200],
"rate_tick_step": 50,
},
"D": {
"g": 4.5,
"nu_ext_over_nu_thr": 0.9,
"t_range": [1000, 1200],
"rate_range": [0, 250],
"rate_tick_step": 50,
},
}
for panel, params in parameters.items():
fig = plt.figure(figsize=(4, 5))
fig.suptitle(panel)
gs = fig.add_gridspec(ncols=1, nrows=2, height_ratios=[4, 1])
ax_spikes, ax_rates = gs.subplots(sharex="col")
sim(
params["g"],
params["nu_ext_over_nu_thr"],
params["t_range"][1] * ms,
ax_spikes,
ax_rates,
params["rate_tick_step"],
)
plt.show()
|