1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
"""
Reproduces Figure 12 (simplified three-compartment model) from the following
paper:
Dendritic Low-Threshold Calcium Currents in Thalamic Relay Cells
Alain Destexhe, Mike Neubig, Daniel Ulrich, John Huguenard
Journal of Neuroscience 15 May 1998, 18 (10) 3574-3588
The original NEURON code is available on ModelDB: https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=279
Reference for the original morphology:
Rat VB neuron (thalamocortical cell), given by J. Huguenard, stained with
biocytin and traced by A. Destexhe, December 1992. The neuron is described
in: J.R. Huguenard & D.A. Prince, A novel T-type current underlies prolonged
calcium-dependent burst firing in GABAergic neurons of rat thalamic reticular
nucleus. J. Neurosci. 12: 3804-3817, 1992.
Available at NeuroMorpho.org:
http://neuromorpho.org/neuron_info.jsp?neuron_name=tc200
NeuroMorpho.Org ID :NMO_00881
Notes
-----
* Completely removed the "Fast mechanism for submembranal Ca++ concentration
(cai)" -- it did not affect the results presented here
* Time constants for the I_T current are slightly different from the equations
given in the paper -- the paper calculation seems to be based on 36 degree
Celsius but the temperature that is used is 34 degrees.
* To reproduce Figure 12C, the "presence of dendritic shunt conductances" meant
setting g_L to 0.15 mS/cm^2 for the whole neuron.
* Other small discrepancies with the paper -- values from the NEURON code were
used whenever different from the values stated in the paper
"""
from brian2 import *
from brian2.units.constants import (zero_celsius, faraday_constant as F,
gas_constant as R)
defaultclock.dt = 0.01*ms
VT = -52*mV
El = -76.5*mV # from code, text says: -69.85*mV
E_Na = 50*mV
E_K = -100*mV
C_d = 7.954 # dendritic correction factor
T = 34*kelvin + zero_celsius # 34 degC (current-clamp experiments)
tadj_HH = 3.0**((34-36)/10.0) # temperature adjustment for Na & K (original recordings at 36 degC)
tadj_m_T = 2.5**((34-24)/10.0)
tadj_h_T = 2.5**((34-24)/10.0)
shift_I_T = -1*mV
gamma = F/(R*T) # R=gas constant, F=Faraday constant
Z_Ca = 2 # Valence of Calcium ions
Ca_i = 240*nM # intracellular Calcium concentration
Ca_o = 2*mM # extracellular Calcium concentration
eqs = Equations('''
Im = gl*(El-v) - I_Na - I_K - I_T: amp/meter**2
I_inj : amp (point current)
gl : siemens/meter**2
# HH-type currents for spike initiation
g_Na : siemens/meter**2
g_K : siemens/meter**2
I_Na = g_Na * m**3 * h * (v-E_Na) : amp/meter**2
I_K = g_K * n**4 * (v-E_K) : amp/meter**2
v2 = v - VT : volt # shifted membrane potential (Traub convention)
dm/dt = (0.32*(mV**-1)*(13.*mV-v2)/
(exp((13.*mV-v2)/(4.*mV))-1.)*(1-m)-0.28*(mV**-1)*(v2-40.*mV)/
(exp((v2-40.*mV)/(5.*mV))-1.)*m) / ms * tadj_HH: 1
dn/dt = (0.032*(mV**-1)*(15.*mV-v2)/
(exp((15.*mV-v2)/(5.*mV))-1.)*(1.-n)-.5*exp((10.*mV-v2)/(40.*mV))*n) / ms * tadj_HH: 1
dh/dt = (0.128*exp((17.*mV-v2)/(18.*mV))*(1.-h)-4./(1+exp((40.*mV-v2)/(5.*mV)))*h) / ms * tadj_HH: 1
# Low-threshold Calcium current (I_T) -- nonlinear function of voltage
I_T = P_Ca * m_T**2*h_T * G_Ca : amp/meter**2
P_Ca : meter/second # maximum Permeability to Calcium
G_Ca = Z_Ca**2*F*v*gamma*(Ca_i - Ca_o*exp(-Z_Ca*gamma*v))/(1 - exp(-Z_Ca*gamma*v)) : coulomb/meter**3
dm_T/dt = -(m_T - m_T_inf)/tau_m_T : 1
dh_T/dt = -(h_T - h_T_inf)/tau_h_T : 1
m_T_inf = 1/(1 + exp(-(v/mV + 56)/6.2)) : 1
h_T_inf = 1/(1 + exp((v/mV + 80)/4)) : 1
tau_m_T = (0.612 + 1.0/(exp(-(v/mV + 131)/16.7) + exp((v/mV + 15.8)/18.2))) * ms / tadj_m_T: second
tau_h_T = (int(v<-81*mV) * exp((v/mV + 466)/66.6) +
int(v>=-81*mV) * (28 + exp(-(v/mV + 21)/10.5))) * ms / tadj_h_T: second
''')
# Simplified three-compartment morphology
morpho = Cylinder(x=[0, 38.42]*um, diameter=26*um)
morpho.dend = Cylinder(x=[0, 12.49]*um, diameter=10.28*um)
morpho.dend.distal = Cylinder(x=[0, 84.67]*um, diameter=8.5*um)
neuron = SpatialNeuron(morpho, eqs, Cm=0.88*uF/cm**2, Ri=173*ohm*cm,
method='exponential_euler')
neuron.v = -74*mV
# Only the soma has Na/K channels
neuron.main.g_Na = 100*msiemens/cm**2
neuron.main.g_K = 100*msiemens/cm**2
# Apply the correction factor to the dendrites
neuron.dend.Cm *= C_d
neuron.m_T = 'm_T_inf'
neuron.h_T = 'h_T_inf'
mon = StateMonitor(neuron, ['v'], record=True)
store('initial state')
def do_experiment(currents, somatic_density, dendritic_density,
dendritic_conductance=0.0379*msiemens/cm**2,
HH_currents=True):
restore('initial state')
voltages = []
neuron.P_Ca = somatic_density
neuron.dend.distal.P_Ca = dendritic_density * C_d
# dendritic conductance (shunting conductance used for Fig 12C)
neuron.gl = dendritic_conductance
neuron.dend.gl = dendritic_conductance * C_d
if not HH_currents:
# Shut off spiking (for Figures 12B and 12C)
neuron.g_Na = 0*msiemens/cm**2
neuron.g_K = 0*msiemens/cm**2
run(180*ms)
store('before current')
for current in currents:
restore('before current')
neuron.main.I_inj = current
print('.', end='')
run(320*ms)
voltages.append(mon[morpho].v[:]) # somatic voltage
return voltages
## Run the various variants of the model to reproduce Figure 12
mpl.rcParams['lines.markersize'] = 3.0
fig, axes = plt.subplots(2, 2)
print('Running experiments for Figure A1 ', end='')
voltages = do_experiment([50, 75]*pA, somatic_density=1.7e-5*cm/second,
dendritic_density=1.7e-5*cm/second)
print(' done.')
cut_off = 100*ms # Do not display first part of simulation
axes[0, 0].plot((mon.t - cut_off) / ms, voltages[0] / mV, color='gray')
axes[0, 0].plot((mon.t - cut_off) / ms, voltages[1] / mV, color='black')
axes[0, 0].set(xlim=(0, 400), ylim=(-80, 40), xticks=[],
title='A1: Uniform T-current density', ylabel='Voltage (mV)')
axes[0, 0].spines['right'].set_visible(False)
axes[0, 0].spines['top'].set_visible(False)
axes[0, 0].spines['bottom'].set_visible(False)
print('Running experiments for Figure A2 ', end='')
voltages = do_experiment([50, 75]*pA, somatic_density=1.7e-5*cm/second,
dendritic_density=9.5e-5*cm/second)
print(' done.')
cut_off = 100*ms # Do not display first part of simulation
axes[1, 0].plot((mon.t - cut_off) / ms, voltages[0] / mV, color='gray')
axes[1, 0].plot((mon.t - cut_off) / ms, voltages[1] / mV, color='black')
axes[1, 0].set(xlim=(0, 400), ylim=(-80, 40),
title='A2: High T-current density in dendrites',
xlabel='Time (ms)', ylabel='Voltage (mV)')
axes[1, 0].spines['right'].set_visible(False)
axes[1, 0].spines['top'].set_visible(False)
print('Running experiments for Figure B ', end='')
currents = np.linspace(0, 200, 41)*pA
voltages_somatic = do_experiment(currents, somatic_density=56.36e-5*cm/second,
dendritic_density=0*cm/second,
HH_currents=False)
voltages_somatic_dendritic = do_experiment(currents, somatic_density=1.7e-5*cm/second,
dendritic_density=9.5e-5*cm/second,
HH_currents=False)
print(' done.')
maxima_somatic = Quantity(voltages_somatic).max(axis=1)
maxima_somatic_dendritic = Quantity(voltages_somatic_dendritic).max(axis=1)
axes[0, 1].yaxis.tick_right()
axes[0, 1].plot(currents/pA, maxima_somatic/mV,
'o-', color='black', label='Somatic only')
axes[0, 1].plot(currents/pA, maxima_somatic_dendritic/mV,
's-', color='black', label='Somatic & dendritic')
axes[0, 1].set(xlabel='Injected current (pA)', ylabel='Peak LTS (mV)',
ylim=(-80, 0))
axes[0, 1].legend(loc='best', frameon=False)
print('Running experiments for Figure C ', end='')
currents = np.linspace(200, 400, 41)*pA
voltages_somatic = do_experiment(currents, somatic_density=56.36e-5*cm/second,
dendritic_density=0*cm/second,
dendritic_conductance=0.15*msiemens/cm**2,
HH_currents=False)
voltages_somatic_dendritic = do_experiment(currents, somatic_density=1.7e-5*cm/second,
dendritic_density=9.5e-5*cm/second,
dendritic_conductance=0.15*msiemens/cm**2,
HH_currents=False)
print(' done.')
maxima_somatic = Quantity(voltages_somatic).max(axis=1)
maxima_somatic_dendritic = Quantity(voltages_somatic_dendritic).max(axis=1)
axes[1, 1].yaxis.tick_right()
axes[1, 1].plot(currents/pA, maxima_somatic/mV,
'o-', color='black', label='Somatic only')
axes[1, 1].plot(currents/pA, maxima_somatic_dendritic/mV,
's-', color='black', label='Somatic & dendritic')
axes[1, 1].set(xlabel='Injected current (pA)', ylabel='Peak LTS (mV)',
ylim=(-80, 0))
axes[1, 1].legend(loc='best', frameon=False)
plt.tight_layout()
plt.show()
|