1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
"""
Unsupervised learning using STDP
--------------------------------
Diehl, P. U., & Cook, M. (2015). Unsupervised learning of digit
recognition using spike-timing-dependent plasticity. Frontiers in
computational neuroscience, 9, 99.
This script replicates the small 2x400-model. It has no command line
parameters. Instead, you control it by changing the constants below
the imports. Run the script with MODE set to "train" which
(eventually) creates the files theta.npy and weights.npy in the
DATA_PATH directory. Rerun it with MODE set to "observe" to create the
assign.npy file in the same directory. Then, run "test" to create a
confusion matrix in confusion.npy. Finally, you can use "plot" to
plot the confusion matrix. The script also creates a few auxilliary
.npy files useful for analysis. The script requires the progressbar2
library.
MNIST_PATH should point to the directory storing the unzipped *-byte
MNIST files (e.g. from https://github.com/cvdfoundation/mnist).
For reasonable accuracy, N_TRAIN should be 50,000+ and N_OBSERVE 1,000+.
Written in 2024 by Björn A. Lindqvist <bjourne@gmail.com>
"""
from brian2 import *
from collections import defaultdict
from pathlib import Path
from progressbar import progressbar
from random import randrange, seed as rseed
from struct import unpack
import numpy as np
# Switch between "train", "observe", and "test" to tune parameters,
# observe excitatory spiking, and test accuracy, respectively.
# Use "plot" to plot the confusion matrix.
MODE = 'test'
# Number of training, observation, and testing samples
N_TRAIN = 25_000
N_OBSERVE = 2_000
N_TEST = 1_000
# Random seed value
SEED = 42
# Storage paths
MNIST_PATH = Path('../mnist')
DATA_PATH = Path('data')
# Number of weight save points
N_SAVE_POINTS = 100
# Don't change these values unless you know what you're doing.
N_INP = 784
N_NEURONS = 400
V_EXC_REST = -65 * mV
V_INH_REST = -60 * mV
INTENSITY = 2
# Weights of exc->inh and inh->exc synapses
W_EXC_INH = 10.4
W_INH_EXC = 17.0
def save_npy(arr, path):
arr = np.array(arr)
print('%-9s %-15s => %-30s' % ('Saving', arr.shape, path))
np.save(path, arr)
def load_npy(path):
arr = np.load(path)
print('%-9s %-30s => %-15s' % ('Loading', path, arr.shape))
return arr
def read_mnist(training):
tag = 'train' if training else 't10k'
images = open(MNIST_PATH / ('%s-images-idx3-ubyte' % tag), 'rb')
images.read(4)
n_images = unpack('>I', images.read(4))[0]
n_rows = unpack(">I", images.read(4))[0]
n_cols = unpack(">I", images.read(4))[0]
labels = open(MNIST_PATH / ('%s-labels-idx1-ubyte' % tag), 'rb')
labels.read(4)
x = np.frombuffer(images.read(), dtype = np.uint8)
x = x.reshape(n_images, -1) / 8.0
y = np.frombuffer(labels.read(), dtype = np.uint8)
return x, y
def build_network(training):
eqs = '''
dv/dt = (v_rest - v + i_exc + i_inh) / tau_mem : volt (unless refractory)
i_exc = ge * -v : volt
i_inh = gi * (v_inh_base - v) : volt
dge/dt = -ge/(1 * ms) : 1
dgi/dt = -gi/(2 * ms) : 1
dtimer/dt = 1 : second
'''
reset = 'v = %r; timer = 0 * ms' % V_EXC_REST
if training:
exc_eqs = eqs + '''
dtheta/dt = -theta / (1e7 * ms) : volt
'''
arr_theta = np.ones(N_NEURONS) * 20 * mV
reset += '; theta += 0.05 * mV'
else:
exc_eqs = eqs + '''
theta : volt
'''
arr_theta = load_npy(DATA_PATH / 'theta.npy') * volt
exc_eqs = Equations(exc_eqs,
tau_mem = 100 * ms,
v_rest = V_EXC_REST,
v_inh_base = -100 * mV)
# Note that this neuron has a bit of un unusual refractoriness mechanism:
# The membrane potential is clamped for 5ms, but spikes are prevented for 50ms
# This has been taken from the original code.
ng_exc = NeuronGroup(
N_NEURONS, exc_eqs,
threshold = 'v > (theta - 72 * mV) and (timer > 50 * ms)',
refractory = 5 * ms,
reset = reset,
method = 'euler',
name = 'exc')
ng_exc.v = V_EXC_REST
ng_exc.theta = arr_theta
inh_eqs = Equations(eqs,
tau_mem = 10 * ms,
v_rest = V_INH_REST,
v_inh_base = -85 * mV)
ng_inh = NeuronGroup(N_NEURONS, inh_eqs,
threshold = 'v > -40 * mV',
refractory = 2 * ms,
reset = 'v = -45 * mV',
method = 'euler',
name = 'inh')
ng_inh.v = V_INH_REST
syns_exc_inh = Synapses(ng_exc, ng_inh,
on_pre = 'ge_post += %f' % W_EXC_INH)
syns_exc_inh.connect(j = 'i')
syns_inh_exc = Synapses(ng_inh, ng_exc,
on_pre = 'gi_post += %f' % W_INH_EXC)
syns_inh_exc.connect("i != j")
pg_inp = PoissonGroup(N_INP, 0 * Hz, name = 'inp')
# During training, inp->exc synapse weights are plastic.
model = 'w : 1'
on_post = ''
on_pre = 'ge_post += w'
if training:
on_pre += '; pre = 1.; w = clip(w - 0.0001 * post1, 0, 1.0)'
on_post += 'post2bef = post2; w = clip(w + 0.01 * pre * post2bef, 0, 1.0); post1 = 1.; post2 = 1.'
model += '''
post2bef : 1
dpre/dt = -pre/(20 * ms) : 1 (event-driven)
dpost1/dt = -post1/(20 * ms) : 1 (event-driven)
dpost2/dt = -post2/(40 * ms) : 1 (event-driven)
'''
weights = (np.random.random(N_INP * N_NEURONS) + 0.01) * 0.3
else:
weights = load_npy(DATA_PATH / 'weights.npy')
syns_inp_exc = Synapses(
pg_inp, ng_exc,
model = model,
on_pre = on_pre,
on_post = on_post,
name = 'inp_exc'
)
syns_inp_exc.connect(True)
syns_inp_exc.delay = 'rand() * 10 * ms'
syns_inp_exc.w = weights
exc_mon = SpikeMonitor(ng_exc, name = 'sp_exc')
net = Network([pg_inp, ng_exc, ng_inh,
syns_inp_exc, syns_exc_inh, syns_inh_exc,
exc_mon])
# Initialize
net.run(0 * ms)
return net
def show_sample(net, sample, intensity):
exc_mon = net['sp_exc']
prev = exc_mon.count[:]
net['inp'].rates = sample * intensity * Hz
net.run(350 * ms)
# Don't count spikes occuring during the 150 ms rest.
next = exc_mon.count[:]
net['inp'].rates = 0 * Hz
net.run(150 * ms)
pat = next - prev
cnt = np.sum(pat)
if cnt < 5:
return show_sample(net, sample, intensity + 1)
return pat
def predict(groups, rates):
return np.argmax([rates[grp].mean() for grp in groups])
def test():
conf = np.zeros((10, 10))
assign = np.load(DATA_PATH / 'assign.npy')
groups = [np.where(assign == i)[0] for i in range(10)]
X, Y = read_mnist(False)
net = build_network(False)
for i in progressbar(range(N_TEST)):
ix = randrange(len(X))
exc = show_sample(net, X[ix], INTENSITY)
guess = predict(groups, exc)
real = Y[ix]
conf[real, guess] += 1
print('Accuracy: %6.3f' % (np.trace(conf) / np.sum(conf)))
conf = conf/conf.sum(axis=1)[:,None]
print(np.around(conf, 2))
save_npy(conf, DATA_PATH / 'confusion.npy')
def normalize_plastic_weights(syns):
conns = np.reshape(syns.w, (N_INP, N_NEURONS))
col_sums = np.sum(conns, axis = 0)
factors = 78./ col_sums
conns *= factors
syns.w = conns.reshape(-1)
def stats(net):
tick = defaultclock.timestep[:]
cnt = np.sum(net['sp_exc'].count[:])
inp_exc = net['inp_exc']
w_mu = np.mean(inp_exc.w)
w_std = np.std(inp_exc.w)
exc = net['exc']
theta = exc.theta / mV
theta_mu = np.mean(theta)
theta_sig = np.std(theta)
return [tick, cnt, w_mu, w_std, theta_mu, theta_sig]
def train():
X, Y = read_mnist(True)
n_samples = X.shape[0]
net = build_network(True)
rows = [stats(net) + [-1]]
w_hist = [np.array(net['inp_exc'].w)]
ratio = max(N_TRAIN // N_SAVE_POINTS, 1)
for i in progressbar(range(N_TRAIN)):
ix = i % n_samples
normalize_plastic_weights(net['inp_exc'])
show_sample(net, X[ix], INTENSITY)
rows.append(stats(net) + [Y[ix]])
if i % ratio == 0:
w_hist.append(np.array(net['inp_exc'].w))
save_npy(rows, DATA_PATH / 'train_stats.npy')
save_npy(w_hist, DATA_PATH / 'train_w_hist.npy')
save_npy(net['inp_exc'].w, DATA_PATH / 'weights.npy')
save_npy(net['exc'].theta, DATA_PATH / 'theta.npy')
def observe():
X, Y = read_mnist(True)
n_samples = X.shape[0]
net = build_network(False)
rows = [stats(net) + [-1]]
responses = defaultdict(list)
for i in progressbar(range(N_OBSERVE)):
ix = i % n_samples
sample = X[ix]
cls = Y[ix]
exc = show_sample(net, sample, INTENSITY)
rows.append(stats(net) + [Y[ix]])
responses[cls].append(exc)
res = np.zeros((10, N_NEURONS))
for cls, vals in responses.items():
res[cls] = np.array(vals).mean(axis = 0)
assign = np.argmax(res, axis = 0)
save_npy(assign, DATA_PATH / 'assign.npy')
save_npy(rows, DATA_PATH / 'observe_stats.npy')
def plot():
conf = np.load(DATA_PATH / "confusion.npy")
import matplotlib.pyplot as plt
plt.imshow(100*conf, interpolation="nearest", cmap=plt.cm.Blues)
for i, j in itertools.product(range(conf.shape[0]), range(conf.shape[1])):
if conf[i, j] == 0:
continue
plt.text(
j,
i,
f"{round(100*conf[i, j])}%",
horizontalalignment="center",
verticalalignment="center",
color="white" if conf[i, j] > 0.5 else "black",
)
plt.colorbar()
plt.xticks(range(10))
plt.yticks(range(10))
plt.xlabel("Predicted label")
plt.ylabel("True label")
plt.show()
if __name__ == '__main__':
seed(SEED)
rseed(SEED)
DATA_PATH.mkdir(parents = True, exist_ok = True)
cmds = dict(train=train, observe=observe, test=test, plot=plot)
cmds[MODE]()
|