File: Diehl_Cook_2015.py

package info (click to toggle)
brian 2.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,872 kB
  • sloc: python: 51,820; cpp: 2,033; makefile: 108; sh: 72
file content (317 lines) | stat: -rw-r--r-- 10,256 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
"""
Unsupervised learning using STDP
--------------------------------
Diehl, P. U., & Cook, M. (2015). Unsupervised learning of digit
recognition using spike-timing-dependent plasticity. Frontiers in
computational neuroscience, 9, 99.

This script replicates the small 2x400-model. It has no command line
parameters. Instead, you control it by changing the constants below
the imports. Run the script with MODE set to "train" which
(eventually) creates the files theta.npy and weights.npy in the
DATA_PATH directory. Rerun it with MODE set to "observe" to create the
assign.npy file in the same directory. Then, run "test" to create a
confusion matrix in confusion.npy. Finally, you can use "plot" to
plot the confusion matrix. The script also creates a few auxilliary
.npy files useful for analysis. The script requires the progressbar2
library.

MNIST_PATH should point to the directory storing the unzipped *-byte
MNIST files (e.g. from https://github.com/cvdfoundation/mnist).
For reasonable accuracy, N_TRAIN should be 50,000+ and N_OBSERVE 1,000+.

Written in 2024 by Björn A. Lindqvist <bjourne@gmail.com>
"""
from brian2 import *
from collections import defaultdict
from pathlib import Path
from progressbar import progressbar
from random import randrange, seed as rseed
from struct import unpack
import numpy as np

# Switch between "train", "observe", and "test" to tune parameters,
# observe excitatory spiking, and test accuracy, respectively.
# Use "plot" to plot the confusion matrix.
MODE = 'test'

# Number of training, observation, and testing samples
N_TRAIN = 25_000
N_OBSERVE = 2_000
N_TEST = 1_000

# Random seed value
SEED = 42

# Storage paths
MNIST_PATH = Path('../mnist')
DATA_PATH = Path('data')

# Number of weight save points
N_SAVE_POINTS = 100

# Don't change these values unless you know what you're doing.
N_INP = 784
N_NEURONS = 400
V_EXC_REST = -65 * mV
V_INH_REST = -60 * mV
INTENSITY = 2

# Weights of exc->inh and inh->exc synapses
W_EXC_INH = 10.4
W_INH_EXC = 17.0

def save_npy(arr, path):
    arr = np.array(arr)
    print('%-9s %-15s => %-30s' % ('Saving', arr.shape, path))
    np.save(path, arr)

def load_npy(path):
    arr = np.load(path)
    print('%-9s %-30s => %-15s' % ('Loading', path, arr.shape))
    return arr

def read_mnist(training):
    tag = 'train' if training else 't10k'
    images = open(MNIST_PATH / ('%s-images-idx3-ubyte' % tag), 'rb')
    images.read(4)
    n_images = unpack('>I', images.read(4))[0]
    n_rows = unpack(">I", images.read(4))[0]
    n_cols = unpack(">I", images.read(4))[0]
    
    labels = open(MNIST_PATH / ('%s-labels-idx1-ubyte' % tag), 'rb')
    labels.read(4)
    x = np.frombuffer(images.read(), dtype = np.uint8)
    x = x.reshape(n_images, -1) / 8.0
    y = np.frombuffer(labels.read(), dtype = np.uint8)
    return x, y

def build_network(training):
    eqs = '''
    dv/dt = (v_rest - v + i_exc + i_inh) / tau_mem  : volt (unless refractory)
    i_exc = ge * -v                         : volt
    i_inh = gi * (v_inh_base - v)           : volt
    dge/dt = -ge/(1 * ms)                   : 1
    dgi/dt = -gi/(2 * ms)                   : 1
    dtimer/dt = 1                           : second
    '''
    reset = 'v = %r; timer = 0 * ms' % V_EXC_REST
    if training:
        exc_eqs = eqs + '''
        dtheta/dt = -theta / (1e7 * ms)         : volt
        '''
        arr_theta = np.ones(N_NEURONS) * 20 * mV
        reset += '; theta += 0.05 * mV'
    else:
        exc_eqs = eqs + '''
        theta                                   : volt
        '''
        arr_theta = load_npy(DATA_PATH / 'theta.npy') * volt
    exc_eqs = Equations(exc_eqs,
                        tau_mem = 100 * ms,
                        v_rest = V_EXC_REST,
                        v_inh_base = -100 * mV)
    # Note that this neuron has a bit of un unusual refractoriness mechanism:
    # The membrane potential is clamped for 5ms, but spikes are prevented for 50ms
    # This has been taken from the original code.
    ng_exc = NeuronGroup(
        N_NEURONS, exc_eqs,
        threshold = 'v > (theta - 72 * mV) and (timer > 50 * ms)',
        refractory = 5 * ms,
        reset = reset,
        method = 'euler',
        name = 'exc')
    ng_exc.v = V_EXC_REST
    ng_exc.theta = arr_theta

    inh_eqs = Equations(eqs,
                        tau_mem = 10 * ms,
                        v_rest = V_INH_REST,
                        v_inh_base = -85 * mV)
    ng_inh = NeuronGroup(N_NEURONS, inh_eqs,
                         threshold = 'v > -40 * mV',
                         refractory = 2 * ms,
                         reset = 'v = -45 * mV',
                         method = 'euler',
                         name = 'inh')
    ng_inh.v = V_INH_REST

    syns_exc_inh = Synapses(ng_exc, ng_inh,
                            on_pre = 'ge_post += %f' % W_EXC_INH)
    syns_exc_inh.connect(j = 'i')

    syns_inh_exc = Synapses(ng_inh, ng_exc,
                            on_pre = 'gi_post += %f' % W_INH_EXC)
    syns_inh_exc.connect("i != j")

    pg_inp = PoissonGroup(N_INP, 0 * Hz, name = 'inp')

    # During training, inp->exc synapse weights are plastic.
    model = 'w : 1'
    on_post = ''
    on_pre = 'ge_post += w'
    if training:
        on_pre += '; pre = 1.; w = clip(w - 0.0001 * post1, 0, 1.0)'
        on_post += 'post2bef = post2; w = clip(w + 0.01 * pre * post2bef, 0, 1.0); post1 = 1.; post2 = 1.'
        model += '''
        post2bef                        : 1
        dpre/dt   = -pre/(20 * ms)      : 1 (event-driven)
        dpost1/dt = -post1/(20 * ms)    : 1 (event-driven)
        dpost2/dt = -post2/(40 * ms)    : 1 (event-driven)
        '''
        weights = (np.random.random(N_INP * N_NEURONS) + 0.01) * 0.3
    else:
        weights = load_npy(DATA_PATH / 'weights.npy')

    syns_inp_exc = Synapses(
        pg_inp, ng_exc,
        model = model,
        on_pre = on_pre,
        on_post = on_post,
        name = 'inp_exc'
    )
    syns_inp_exc.connect(True)
    syns_inp_exc.delay = 'rand() * 10 * ms'
    syns_inp_exc.w = weights

    exc_mon = SpikeMonitor(ng_exc, name = 'sp_exc')
    net = Network([pg_inp, ng_exc, ng_inh,
                   syns_inp_exc, syns_exc_inh, syns_inh_exc,
                   exc_mon])
    # Initialize
    net.run(0 * ms)
    return net

def show_sample(net, sample, intensity):
    exc_mon = net['sp_exc']
    prev = exc_mon.count[:]
    net['inp'].rates = sample * intensity * Hz
    net.run(350 * ms)
    # Don't count spikes occuring during the 150 ms rest.
    next = exc_mon.count[:]
    net['inp'].rates = 0 * Hz
    net.run(150 * ms)
    pat = next - prev
    cnt = np.sum(pat)
    if cnt < 5:
        return show_sample(net, sample, intensity + 1)
    return pat

def predict(groups, rates):
    return np.argmax([rates[grp].mean() for grp in groups])

def test():
    conf = np.zeros((10, 10))
    assign = np.load(DATA_PATH / 'assign.npy')
    groups = [np.where(assign == i)[0] for i in range(10)]

    X, Y = read_mnist(False)
    net = build_network(False)
    for i in progressbar(range(N_TEST)):
        ix = randrange(len(X))
        exc = show_sample(net, X[ix], INTENSITY)
        guess = predict(groups, exc)
        real = Y[ix]
        conf[real, guess] += 1

    print('Accuracy: %6.3f' % (np.trace(conf) / np.sum(conf)))
    conf = conf/conf.sum(axis=1)[:,None]
    print(np.around(conf, 2))
    save_npy(conf, DATA_PATH / 'confusion.npy')

def normalize_plastic_weights(syns):
    conns = np.reshape(syns.w, (N_INP, N_NEURONS))
    col_sums = np.sum(conns, axis = 0)
    factors = 78./ col_sums
    conns *= factors
    syns.w = conns.reshape(-1)

def stats(net):
    tick = defaultclock.timestep[:]
    cnt = np.sum(net['sp_exc'].count[:])

    inp_exc = net['inp_exc']
    w_mu = np.mean(inp_exc.w)
    w_std = np.std(inp_exc.w)

    exc = net['exc']
    theta = exc.theta / mV
    theta_mu = np.mean(theta)
    theta_sig = np.std(theta)
    return [tick, cnt, w_mu, w_std, theta_mu, theta_sig]

def train():
    X, Y = read_mnist(True)
    n_samples = X.shape[0]
    net = build_network(True)
    rows = [stats(net) + [-1]]
    w_hist = [np.array(net['inp_exc'].w)]

    ratio = max(N_TRAIN // N_SAVE_POINTS, 1)
    for i in progressbar(range(N_TRAIN)):
        ix = i % n_samples
        normalize_plastic_weights(net['inp_exc'])
        show_sample(net, X[ix], INTENSITY)
        rows.append(stats(net) + [Y[ix]])
        if i % ratio == 0:
            w_hist.append(np.array(net['inp_exc'].w))

    save_npy(rows, DATA_PATH / 'train_stats.npy')
    save_npy(w_hist, DATA_PATH / 'train_w_hist.npy')
    save_npy(net['inp_exc'].w, DATA_PATH / 'weights.npy')
    save_npy(net['exc'].theta, DATA_PATH / 'theta.npy')

def observe():
    X, Y = read_mnist(True)
    n_samples = X.shape[0]
    net = build_network(False)
    rows = [stats(net) + [-1]]
    responses = defaultdict(list)

    for i in progressbar(range(N_OBSERVE)):
        ix = i % n_samples
        sample = X[ix]
        cls = Y[ix]
        exc = show_sample(net, sample, INTENSITY)
        rows.append(stats(net) + [Y[ix]])
        responses[cls].append(exc)

    res = np.zeros((10, N_NEURONS))
    for cls, vals in responses.items():
        res[cls] = np.array(vals).mean(axis = 0)

    assign = np.argmax(res, axis = 0)
    save_npy(assign, DATA_PATH / 'assign.npy')
    save_npy(rows, DATA_PATH / 'observe_stats.npy')

def plot():
    conf = np.load(DATA_PATH / "confusion.npy")

    import matplotlib.pyplot as plt

    plt.imshow(100*conf, interpolation="nearest", cmap=plt.cm.Blues)
    for i, j in itertools.product(range(conf.shape[0]), range(conf.shape[1])):
        if conf[i, j] == 0:
            continue
        plt.text(
            j,
            i,
            f"{round(100*conf[i, j])}%",
            horizontalalignment="center",
            verticalalignment="center",
            color="white" if conf[i, j] > 0.5 else "black",
        )
    plt.colorbar()
    plt.xticks(range(10))
    plt.yticks(range(10))
    plt.xlabel("Predicted label")
    plt.ylabel("True label")
    plt.show()


if __name__ == '__main__':
    seed(SEED)
    rseed(SEED)
    DATA_PATH.mkdir(parents = True, exist_ok = True)
    cmds = dict(train=train, observe=observe, test=test, plot=plot)
    cmds[MODE]()