File: Jansen_Rit_1995_single_column.py

package info (click to toggle)
brian 2.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,872 kB
  • sloc: python: 51,820; cpp: 2,033; makefile: 108; sh: 72
file content (100 lines) | stat: -rw-r--r-- 3,405 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#!/usr/bin/env python
# coding: utf-8
"""
[Jansen and Rit 1995 model](https://link.springer.com/content/pdf/10.1007/BF00199471.pdf) (Figure 3) in Brian2.

Equations are the system of differential equations number (6) in the original paper. 
The rate parameters $a=100 s^{-1}$ and $b=200 s^{-1}$ were changed to excitatory $\tau_e = 1000ms/a =10ms$  and inhibitory $\tau_i = 1000ms/b =20ms$ time constants as in 
[Thomas Knosche review](https://link.springer.com/referenceworkentry/10.1007%2F978-1-4614-6675-8_65), 
[Touboul et al. 2011](https://direct.mit.edu/neco/article-abstract/23/12/3232/7717/Neural-Mass-Activity-Bifurcations-and-Epilepsy?redirectedFrom=fulltext), or 
[David & Friston 2003](https://www.sciencedirect.com/science/article/pii/S1053811903004579). 
Units were removerd from parameters $e_0$, $v_0$, $r_0$, $A$, $B$, and $p$ to stop Brian's confusion.

Ruben Tikidji-Hamburyan 2021 (rth@r-a-r.org)
""" 



from numpy import *
from numpy import random as rnd
from matplotlib.pyplot import *
from brian2 import *

defaultclock.dt = .1*ms   #default time step

te,ti    = 10.*ms, 20.*ms #taus for excitatory and inhibitory populations
e0       = 5.             #max firing rate
v0       = 6.             #(max FR)/2 input
r0       = 0.56           #gain rate
A,B,C    = 3.25, 22., 135 #standard parameters as in the set (7) of the original paper
P,deltaP = 120, 320.-120  #random input uniformly distributed between 120 and
                          #320 pulses per second

# Random noise
nstim = TimedArray(rnd.rand(70000),2*ms)

# Equations as in the system (6) of the original paper
equs = """
dy0/dt = y3                             /second : 1
dy3/dt = (A        * Sp -2*y3 -y0/te*second)/te : 1
dy1/dt = y4                             /second : 1
dy4/dt = (A*(p+ C2 * Se)-2*y4 -y1/te*second)/te : 1
dy2/dt = y5                             /second : 1
dy5/dt = (B   * C4 * Si -2*y5 -y2/ti*second)/ti : 1
p  = P0+nstim(t)*dlP                   : 1
Sp = e0/(1+exp(r0*(v0 - (y1-y2)    ))) : 1
Se = e0/(1+exp(r0*(v0 -  C1*y0     ))) : 1
Si = e0/(1+exp(r0*(v0 -  C3*y0     ))) : 1
C1            : 1
C2 = 0.8 *C1  : 1
C3 = 0.25*C1  : 1
C4 = 0.25*C1  : 1
P0            : 1
dlP           : 1
"""

n = NeuronGroup(6,equs,method='euler') #creates 6 JR models for different connectivity parameters

#set parameters as for different traces on figure 3 of the original paper
n.C1[0]  = 68
n.C1[1]  = 128
n.C1[2]  = C
n.C1[3]  = 270
n.C1[4]  = 675
n.C1[5]  = 1350
#set stimulus offset and noise magnitude
n.P0     = P
n.dlP    = deltaP

#just record everything
sm = StateMonitor(n,['y4','y1','y3','y0','y5','y2'],record=True)

#Runs for 5 second
run(5*second,report='text')


#This code goes over all models with different parameters and plot activity of each population.

figure(1,figsize=(22,16))
idx1 = where(sm.t/second>2.)[0]

o = 0
for p in [0,1,2,3,4,5]:
    if o == 0: ax = subplot(6,3,1)
    else     :subplot(6,3,1+o,sharex=ax)
    if o == 0: title("E")
    plot(sm.t[idx1]/second, sm[p].y1[idx1],'g-')
    ylabel(f"C={n[p].C1[0]}")
    if o == 15: xlabel("Time (seconds)")
    subplot(6,3,2+o,sharex=ax)
    if o == 0: title("P")
    plot(sm.t[idx1]/second, sm[p].y0[idx1],'b-')
    if o == 15: xlabel("Time (seconds)")
    subplot(6,3,3+o,sharex=ax)
    if o == 0: title("I")
    plot(sm.t[idx1]/second, sm[p].y2[idx1],'r-')
    if o == 15: xlabel("Time (seconds)")
    o += 3

show()