1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
#!/usr/bin/env python
"""
Firing patterns in the adaptive exponential integrate-and-fire model
--------------------------------------------------------------------
Naud R et al. (2008): Firing patterns in the adaptive exponential integrate-and-fire model.
Biol Cybern. 2008; 99(4): 335–347.
doi:10.1007/s00422-008-0264-7
Parameters adapted by P. Müller to match figures, cf. http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3445.
Sebastian Schmitt, Sebastian Billaudelle, 2022
"""
from brian2 import *
import matplotlib.pyplot as plt
def sim(ax_vm, ax_w, ax_vm_w, parameters):
"""
simulate with parameters and plot to axes
"""
# taken from Touboul_Brette_2008
eqs = """
dvm/dt = (g_l*(e_l - vm) + g_l*d_t*exp((vm-v_t)/d_t) + i_stim - w)/c_m : volt
dw/dt = (a*(vm - e_l) - w)/tau_w : amp
"""
neuron = NeuronGroup(
1,
model=eqs,
threshold="vm > 0*mV",
reset="vm = v_r; w += b",
method="euler",
namespace=parameters,
)
neuron.vm = parameters["e_l"]
neuron.w = 0
states = StateMonitor(neuron, ["vm", "w"], record=True, when="thresholds")
defaultclock.dt = 0.1 * ms
run(0.6 * second)
# clip membrane voltages to threshold (0 mV)
vms = np.clip(states[0].vm / mV, a_min=None, a_max=0)
ax_vm.plot(states[0].t / ms, vms)
ax_w.plot(states[0].t / ms, states[0].w / nA)
ax_vm_w.plot(vms, states[0].w / nA)
ax_w.sharex(ax_vm)
ax_vm.tick_params(labelbottom=False)
ax_vm.set_ylabel("V [mV]")
ax_w.set_xlabel("t [ms]")
ax_w.set_ylabel("w [nA]")
ax_vm_w.set_xlabel("V [mV]")
ax_vm_w.set_ylabel("w [nA]")
ax_vm_w.yaxis.tick_right()
ax_vm_w.yaxis.set_label_position("right")
patterns = {
"tonic spiking": {
"c_m": 200 * pF,
"g_l": 10 * nS,
"e_l": -70.0 * mV,
"v_t": -50.0 * mV,
"d_t": 2.0 * mV,
"a": 2.0 * nS,
"tau_w": 30.0 * ms,
"b": 0.0 * pA,
"v_r": -58.0 * mV,
"i_stim": 500 * pA,
},
"adaptation": {
"c_m": 200 * pF,
"g_l": 12 * nS,
"e_l": -70.0 * mV,
"v_t": -50.0 * mV,
"d_t": 2.0 * mV,
"a": 2.0 * nS,
"tau_w": 300.0 * ms,
"b": 60.0 * pA,
"v_r": -58.0 * mV,
"i_stim": 500 * pA,
},
"initial burst": {
"c_m": 130 * pF,
"g_l": 18 * nS,
"e_l": -58.0 * mV,
"v_t": -50.0 * mV,
"d_t": 2.0 * mV,
"a": 4.0 * nS,
"tau_w": 150.0 * ms,
"b": 120.0 * pA,
"v_r": -50.0 * mV,
"i_stim": 400 * pA,
},
"regular bursting": {
"c_m": 200 * pF,
"g_l": 10 * nS,
"e_l": -58.0 * mV,
"v_t": -50.0 * mV,
"d_t": 2.0 * mV,
"a": 2.0 * nS,
"tau_w": 120.0 * ms,
"b": 100.0 * pA,
"v_r": -46.0 * mV,
"i_stim": 210 * pA,
},
"delayed accelerating": {
"c_m": 200 * pF,
"g_l": 12 * nS,
"e_l": -70.0 * mV,
"v_t": -50.0 * mV,
"d_t": 2.0 * mV,
"a": -10.0 * nS,
"tau_w": 300.0 * ms,
"b": 0.0 * pA,
"v_r": -58.0 * mV,
"i_stim": 300 * pA,
},
"delayed regular bursting": {
"c_m": 100 * pF,
"g_l": 10 * nS,
"e_l": -65.0 * mV,
"v_t": -50.0 * mV,
"d_t": 2.0 * mV,
"a": -10.0 * nS,
"tau_w": 90.0 * ms,
"b": 30.0 * pA,
"v_r": -47.0 * mV,
"i_stim": 110 * pA,
},
"transient spiking": {
"c_m": 100 * pF,
"g_l": 10 * nS,
"e_l": -65.0 * mV,
"v_t": -50.0 * mV,
"d_t": 2.0 * mV,
"a": 10.0 * nS,
"tau_w": 90.0 * ms,
"b": 100.0 * pA,
"v_r": -47.0 * mV,
"i_stim": 180 * pA,
},
"irregular spiking": {
"c_m": 100 * pF,
"g_l": 12 * nS,
"e_l": -60.0 * mV,
"v_t": -50.0 * mV,
"d_t": 2.0 * mV,
"a": -11.0 * nS,
"tau_w": 130.0 * ms,
"b": 30.0 * pA,
"v_r": -48.0 * mV,
"i_stim": 160 * pA,
},
}
# loop over all patterns and plot
for pattern, parameters in patterns.items():
fig = plt.figure(figsize=(10, 5))
fig.suptitle(pattern)
gs = fig.add_gridspec(2, 2)
ax_vm = fig.add_subplot(gs[0, 0])
ax_w = fig.add_subplot(gs[1, 0])
ax_vm_w = fig.add_subplot(gs[:, 1])
sim(ax_vm, ax_w, ax_vm_w, parameters)
plt.show()
|