1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
#!/usr/bin/env python3
"""
Reproduces Figure 2F of
The Use of Hebbian Cell Assemblies for Nonlinear Computation
by Tetzlaff C., Dasgupta S., Kulvicius T. and Wörgötter F.
Sci Rep 5, 12866 (2015).
https://doi.org/10.1038/srep12866
Sebastian Schmitt, 2022
"""
import numpy as np
import matplotlib.pyplot as plt
from brian2 import NeuronGroup, Synapses, StateMonitor, run, defaultclock, ms, second, TimedArray, seed
# random seed that gives curves similar to the ones in the publication
seed(9873487)
# neuron parameters (sigmoidal activation)
beta = 0.03
epsilon = 120
F_max = 100
F_T = 1
tau_u = 1*ms
R = 0.012
# plasticity timescales
tau_ratio = 60
# hebbian
tau_H = 3e4*ms
# synaptic scaling
tau_SS = tau_ratio * tau_H
# synaptic weights
W_max = np.sqrt(tau_ratio*(F_max**2/(F_max - F_T)))
W_ext = W_max
W_input = W_max
W_I = 0.3*W_max
# stimulus
N_units = 100
N_stim_units = 20
stim_A_units_until = N_stim_units
stim_B_units_from = N_units-N_stim_units
# connection probabilities
p_E = 0.1
p_I = 0.2
# paper uses 0.3*ms
DT = 0.5*ms
defaultclock.dt = DT
# duration of a learning trial
lt = 5000*DT
duration = 100*lt
no_input_until = 5*lt
balanced_until = duration/2
# gate balanced presentation of stimulus 1 and 2
balanced = TimedArray([lt_counter*lt < balanced_until for lt_counter in range(int(duration/lt))], dt=lt)
# function used for stimulus (typo in paper, +1 is not part of the argument of sin)
stim_func = TimedArray([100*(np.sin(0.1*(i+1))+1) for i in range(int(duration/DT))], dt=DT)
# gate learning phase of either stimulus 1 or 2
learning_phase = TimedArray([i%10 > 3 for i in range(int(duration/(0.1*lt)))], dt=0.1*lt)
# if not balanced present stimulus A three times more often than stimulus B
stim_A_gate = TimedArray([lt_counter % 2 == 0 if balanced(lt_counter*lt) else lt_counter % 4 in [0,1,2]
for lt_counter in range(int(duration/lt))], dt=lt)
stim_B_gate = TimedArray([lt_counter % 2 == 1 if balanced(lt_counter*lt) else lt_counter % 4 == 3
for lt_counter in range(int(duration/lt))], dt=lt)
# noise is applied also during stimulation
neurons = NeuronGroup(N_units,
"""
F = F_max/(1+exp(beta*(epsilon-u))) : 1
du/dt = (-u + R*(I_E - I_I + W_input*(I_stim_A + I_stim_B)))/tau_u + R*W_ext*20*sqrt((DT/ms)/ms)*xi: 1
I_E : 1
I_I : 1
index : 1 (constant)
stim_units_A = index < stim_A_units_until : boolean
stim_units_B = index >= (stim_B_units_from) : boolean
I_stim_A = learning_phase(t)*int(stim_units_A)*stim_A_gate(t)*stim_func(t) : 1
I_stim_B = learning_phase(t)*int(stim_units_B)*stim_B_gate(t)*stim_func(t) : 1
""",
method = "euler")
neurons.index = range(len(neurons))
# excitatory connections with Hebbian plasticity and synaptic scaling
synapses_E = Synapses(neurons, neurons,
"""
dw/dt = 1/tau_H*F_pre*F_post + 1/tau_SS*(F_T - F_post)*w**2 : 1 (clock-driven)
I_E_post = w*F_pre : 1 (summed)
""",
method="euler"
)
# do not connect between the two populations of stimulated neurons
synapses_E.connect(p=p_E, condition="((j > stim_A_units_until and i >= stim_B_units_from) or (j < stim_B_units_from and i < stim_A_units_until))"
"or ((i > stim_A_units_until and i < stim_B_units_from) and (j > stim_A_units_until and j < stim_B_units_from))")
# fixed weight inhibitory connections
synapses_I = Synapses(neurons, neurons,
"""
w : 1
I_I_post = w*F_pre : 1 (summed)
"""
)
synapses_I.connect(p=p_I)
synapses_I.w = W_I
statemon_neurons = StateMonitor(neurons, ["F", "I_stim_A", "I_stim_B"], record=True, dt=100*defaultclock.dt)
statemon_synapses_E = StateMonitor(synapses_E, "w", record=True, dt=100*defaultclock.dt)
statemon_synapses_for_assembly_analysis = StateMonitor(synapses_E, "w", record=True, dt=lt)
run(duration, report="text")
# threshold saying that synaptic efficacies larger than theta are
# 'strong' and others are 'weak'
theta = 0.5*W_max
in_assembly_A = []
in_assembly_B = []
# traverse through the graph following 'strong' synapses
def go(W, source, units_in_assembly):
units_in_assembly.add(source)
# check all possible targets
for target in range(N_units):
w = W[source][target]
if w > theta:
W[source][target] = 0
go(W, target, units_in_assembly)
# for each learning trial
for ws in statemon_synapses_for_assembly_analysis.w.T:
# construct a full weight matrix
W = np.full((N_units, N_units), np.nan)
W[synapses_E.i[:], synapses_E.j[:]] = ws
for in_assembly, stim_units in zip([in_assembly_A, in_assembly_B],
[range(stim_A_units_until),
range(stim_B_units_from, N_units)]):
units_in_assembly = set()
# start with units that are stimulated
for stim_unit in stim_units:
go(W, stim_unit, units_in_assembly)
in_assembly.append(len(units_in_assembly))
# competitive development of the two competing cell assemblies A and B as a function of the input protocol
fig, ax = plt.subplots()
ax.plot(in_assembly_A, linestyle="None", marker='o', color='orange', label="A")
ax.plot(in_assembly_B, linestyle="None", marker='o', color='olivedrab', label="B")
ax.set_ylim(19, 51)
ax.set_xlim(0, 100)
ax.set_ylabel("Neurons in Cell Assembly [%]")
ax.set_xlabel("Learning Trial")
ax.axvline(balanced_until/lt, linestyle='dashed', color='k')
ax.text(15, 52, " A A", color='orange', fontfamily="monospace", fontsize="xx-large")
ax.text(15, 52, " B B", color='olivedrab', fontfamily="monospace", fontsize="xx-large")
ax.text(65, 52, " 3A 3A", color='orange', fontfamily="monospace", fontsize="xx-large")
ax.text(65, 52, " B B", color='olivedrab', fontfamily="monospace", fontsize="xx-large")
plt.show()
# stimulus, neuronal activity and excitatory weights as function of time
fig, axes = plt.subplots(3, sharex=True)
axes[0].plot(statemon_neurons.I_stim_A[0], label="A", color='orange')
axes[0].plot(statemon_neurons.I_stim_B[-1], label="B", color='olivedrab')
axes[0].legend(loc="upper right")
axes[0].set_title("Stimulus")
axes[1].imshow(statemon_neurons.F, aspect='auto')
axes[1].set_title("Neuron Activity")
axes[1].axhline(stim_A_units_until, linestyle='dashed', color='white')
axes[1].axhline(stim_B_units_from, linestyle='dashed', color='white')
axes[2].imshow(statemon_synapses_E.w, aspect='auto')
axes[2].set_title("Excitatory Weights")
axes[2].set_xticks(range(0, 5000, 250))
axes[2].set_xticklabels(f"{i}" for i in range(0, 100, 5))
axes[2].set_xlabel("Learning Trial")
axes[2].set_xlim(0, 5000)
fig.tight_layout()
plt.show()
|