File: Tsodyks_Pawelzik_Markram_1998.py

package info (click to toggle)
brian 2.9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,872 kB
  • sloc: python: 51,820; cpp: 2,033; makefile: 108; sh: 72
file content (219 lines) | stat: -rwxr-xr-x 5,508 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#!/usr/bin/env python3
"""
Fig. 1 from:

M. Tsodyks, K. Pawelzik, H. Markram
Neural Networks with Dynamic Synapses
Neural Computation 10, 821–835 (1998)

https://doi.org/10.1162/089976698300017502

Sebastian Schmitt, 2022
"""

import numpy as np
import matplotlib.pyplot as plt

from brian2 import (
    NeuronGroup,
    Synapses,
    SpikeGeneratorGroup,
    SpikeMonitor,
    StateMonitor,
)
from brian2 import ms, mV, pA, Mohm, Gohm, Hz
from brian2 import run


def get_neuron(tau_mem, R_in):
    """
    tau_mem -- membrane time constant
    R_in -- input resistance
    """
    neuron = NeuronGroup(1,
                         """
                         tau_mem : second
                         I_syn : ampere
                         R_in : ohm
                         dv/dt = -v/tau_mem + (R_in*I_syn)/tau_mem : volt
                         """,
                         method="exact")

    neuron.tau_mem = tau_mem
    neuron.R_in = R_in

    return neuron


def get_synapses(stimulus, neuron, tau_inact, A_SE, U_SE, tau_rec, tau_facil=None):
    """
    stimulus -- input stimulus
    neuron -- target neuron
    tau_inact -- inactivation time constant
    A_SE -- absolute synaptic strength
    U_SE -- utilization of synaptic efficacy
    tau_rec -- recovery time constant
    tau_facil -- facilitation time constant (optional)
    """

    synapses_eqs = """
    dx/dt =  z/tau_rec   : 1 (clock-driven) # recovered
    dy/dt = -y/tau_inact : 1 (clock-driven) # active
    A_SE : ampere
    U_SE : 1
    tau_inact : second
    tau_rec : second
    z = 1 - x - y : 1 # inactive
    I_syn_post = A_SE*y : ampere (summed)
    """

    if tau_facil:
        synapses_eqs += """
        du/dt = -u/tau_facil : 1 (clock-driven)
        tau_facil : second
        """

        synapses_action = """
        u += U_SE*(1-u)
        y += u*x # important: update y first
        x += -u*x
        """
    else:
        synapses_action = """
        y += U_SE*x # important: update y first
        x += -U_SE*x
        """

    synapses = Synapses(stimulus,
                        neuron,
                        model=synapses_eqs,
                        on_pre=synapses_action,
                        method="exponential_euler")
    synapses.connect()

    # start fully recovered
    synapses.x = 1

    synapses.tau_inact = tau_inact
    synapses.A_SE = A_SE
    synapses.U_SE = U_SE
    synapses.tau_rec = tau_rec

    if tau_facil:
        synapses.tau_facil = tau_facil

    return synapses


def get_stimulus(start, stop, frequency):
    """
    start -- start time of stimulus
    stop -- stop time of stimulus
    frequency -- frequency of stimulus
    """

    times = np.arange(start / ms, stop / ms, 1 / (frequency / Hz) * 1e3) * ms
    stimulus = SpikeGeneratorGroup(1, [0] * len(times), times)

    return stimulus


parameters = {
    "A": {
        "neuron": {"tau_mem": 40 * ms,
                   "R_in": 100*Mohm},
        "synapse": {
            "tau_inact": 3 * ms,
            "A_SE": 250 * pA,
            "tau_rec": 800 * ms,
            "U_SE": 0.6, # 0.5 from publication does not match plot
        },
        "stimulus": {"start": 100 * ms,
                     "stop": 1100 * ms,
                     "frequency": 20 * Hz},
        "simulation": {"duration": 1200 * ms},
        "plot": {
            "title": "A) D - 20 Hz",
            "ylim": [0, 1],
            "xlim": [0, 1200],
            "xtickstep": 200,
        },
    },
    "B": {
        "neuron": {"tau_mem": 60 * ms,
                   "R_in": 1*Gohm},
        "synapse": {
            "tau_inact": 1.5 * ms,
            "A_SE": 1540 * pA,
            "tau_rec": 130 * ms,
            "U_SE": 0.03,
            "tau_facil": 530 * ms,
        },
        "stimulus": {"start": 100 * ms,
                     "stop": 1100 * ms,
                     "frequency": 20 * Hz},
        "simulation": {"duration": 1200 * ms},
        "plot": {
            "title": "B) F - 20 Hz",
            "ylim": [0, 14.9],
            "xlim": [0, 1200],
            "xtickstep": 200,
        },
    },
    "C": {
        "neuron": {"tau_mem": 60 * ms,
                   "R_in": 1*Gohm},
        "synapse": {
            "tau_inact": 1.5 * ms,
            "A_SE": 1540 * pA,
            "tau_rec": 130 * ms,
            "U_SE": 0.03,
            "tau_facil": 530 * ms,
        },
        "stimulus": {"start": 100 * ms,
                     "stop": 375 * ms,
                     "frequency": 70 * Hz},
        "simulation": {"duration": 500 * ms},
        "plot": {
            "title": "C) F - 70 Hz",
            "ylim": [0, 20],
            "xlim": [0, 500],
            "xtickstep": 50,
        },
    },
}

fig, axes = plt.subplots(3)

for ax, (panel, p) in zip(axes, parameters.items()):

    neuron = get_neuron(**p["neuron"])
    stimulus = get_stimulus(**p["stimulus"])
    synapses = get_synapses(stimulus, neuron, **p["synapse"])

    state_monitor_neuron = StateMonitor(neuron, ["v"], record=True)

    run(p["simulation"]["duration"])

    ax.plot(
        state_monitor_neuron.t / ms,
        state_monitor_neuron[0].v / mV,
        label=p["plot"]["title"],
    )

    ax.set_xlim(*p["plot"]["xlim"])
    ax.set_ylim(*p["plot"]["ylim"])
    ax.set_ylabel("mV")
    ax.set_xlabel("Time (ms)")

    ax.set_xticks(
        np.arange(
            p["plot"]["xlim"][0],
            p["plot"]["xlim"][1] + p["plot"]["xtickstep"],
            p["plot"]["xtickstep"],
        )
    )

    ax.legend()

plt.show()