1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
/*! \file mm.c
\brief Implementation: dynamic memory management
\author Markus L. Noga <markus@noga.de>
*/
/*
* The contents of this file are subject to the Mozilla Public License
* Version 1.0 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS"
* basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
* License for the specific language governing rights and limitations
* under the License.
*
* The Original Code is legOS code, released October 17, 1999.
*
* The Initial Developer of the Original Code is Markus L. Noga.
* Portions created by Markus L. Noga are Copyright (C) 1999
* Markus L. Noga. All Rights Reserved.
*
* Contributor(s): Markus L. Noga <markus@noga.de>
*/
#include <sys/mm.h>
#ifdef CONF_MM
#include <stdlib.h>
#include <sys/tm.h>
#include <sys/critsec.h>
#include <string.h>
///////////////////////////////////////////////////////////////////////////////
//
// Variables
//
///////////////////////////////////////////////////////////////////////////////
size_t *mm_first_free; //!< first free block
#ifndef CONF_TM
typedef size_t tid_t; //! dummy process ID type
//! current process ID
/*! we need a non-null, non-0xffff current pid even if there is no
task management.
*/
const tid_t ctid=0x0001;
#endif
///////////////////////////////////////////////////////////////////////////////
//
// Functions
//
///////////////////////////////////////////////////////////////////////////////
//
// memory block structure:
// 0 1 : pid of owner (0=empty)
// 2 3 : size of data block >> 1
// 4 ... 4+2n: data
//
//! check for free blocks after this one and join them if possible
/* \param ptr pointer to size field of current block
\return size of block
*/
size_t mm_try_join(size_t *ptr) {
size_t *next=ptr+*ptr+1;
size_t increase=0;
while(*next==MM_FREE && next>=&mm_start) {
increase+=*(next+1) + MM_HEADER_SIZE;
next +=*(next+1) + MM_HEADER_SIZE;
}
return (*ptr)+=increase;
}
//! defragment free blocks
/*! use mm_try_join on each free block of memory
*/
void mm_defrag() {
size_t *ptr = &mm_start;
#ifdef CONF_TM
ENTER_KERNEL_CRITICAL_SECTION();
#endif
while(ptr >= &mm_start) {
if(*ptr == MM_FREE)
mm_try_join(ptr+1);
ptr += *(ptr+1);
ptr += MM_HEADER_SIZE;
}
#ifdef CONF_TM
LEAVE_KERNEL_CRITICAL_SECTION();
#endif
}
//! update first free block pointer
/*! \param start pointer to owner field of a memory block to start with.
*/
void mm_update_first_free(size_t *start) {
size_t *ptr=start;
while((*ptr!=MM_FREE) && (ptr>=&mm_start))
ptr+=*(ptr+1)+MM_HEADER_SIZE;
mm_first_free=ptr;
}
//! initialize memory management
/*!
*/
void mm_init() {
size_t *current,*next;
current=&mm_start;
// memory layout
//
MM_BLOCK_FREE (&mm_start); // ram
// something at 0xc000 ?
MM_BLOCK_RESERVED(0xef30); // lcddata
MM_BLOCK_FREE (0xef50); // ram2
MM_BLOCK_RESERVED(0xf000); // motor
MM_BLOCK_FREE (0xfe00); // ram4
MM_BLOCK_RESERVED(0xff00); // stack, onchip
// expand last block to encompass all available memory
*current=(int)(((-(int) current)-2)>>1);
mm_update_first_free(&mm_start);
}
//! allocate a block of memory
/*! \param size requested block size
\return 0 on error, else pointer to block.
*/
void *malloc(size_t size) {
size_t *ptr,*next;
size=(size+1)>>1; // only multiples of 2
#ifdef CONF_TM
ENTER_KERNEL_CRITICAL_SECTION();
#endif
ptr=mm_first_free;
while(ptr>=&mm_start) {
if(*(ptr++)==MM_FREE) { // free block?
#ifdef CONF_TM
mm_try_join(ptr); // unite with later blocks
#endif
if(*ptr>=size) { // big enough?
*(ptr-1)=(size_t)ctid; // set owner
// split this block?
if((*ptr-size)>=MM_SPLIT_THRESH) {
next=ptr+size+1;
*(next++)=MM_FREE;
*(next)=*ptr-size-MM_HEADER_SIZE;
mm_try_join(next);
*ptr=size;
}
// was it the first free one?
if(ptr==mm_first_free+1)
mm_update_first_free(ptr+*ptr+1);
#ifdef CONF_TM
LEAVE_KERNEL_CRITICAL_SECTION();
#endif
return (void*) (ptr+1);
}
}
ptr+=(*ptr)+1; // find next block.
}
#ifdef CONF_TM
LEAVE_KERNEL_CRITICAL_SECTION();
#endif
return NULL;
}
//! free a previously allocated block of memory.
/*! \param the_ptr pointer to block
ever heard of free(software_paradigm)?
*/
void free(void *the_ptr) {
size_t *ptr=the_ptr;
#ifndef CONF_TM
size_t *p2,*next;
#endif
if(ptr==NULL || (((size_t)ptr)&1) )
return;
ptr-=MM_HEADER_SIZE;
*((size_t*) ptr)=MM_FREE; // mark as free
#ifdef CONF_TM
// for task safe operations, free needs to be
// atomic and nonblocking, because it may be
// called by the scheduler.
//
// therefore, just update mm_first_free
//
if(ptr<mm_first_free || mm_first_free<&mm_start)
mm_first_free=ptr; // update mm_first_free
#else
// without task management, we have the time to
// unite neighboring memory blocks.
//
p2=&mm_start;
while(p2!=ptr) { // we could make free
next=p2+*(p2+1)+MM_HEADER_SIZE; // O(1) if we included
if(*p2==MM_FREE && next==ptr) // a pointer to the
break; // previous block.
p2=next; // I don't want to.
}
mm_try_join(p2+1); // defragment free areas
if(ptr<mm_first_free || mm_first_free<&mm_start)
mm_update_first_free(ptr); // update mm_first_free
#endif
}
//! allocate adjacent blocks of memory
/*! \param nmemb number of blocks (must be > 0)
\param size individual block size (must be >0)
\return 0 on error, else pointer to block
*/
void *calloc(size_t nmemb, size_t size) {
void *ptr;
size_t original_size = size;
if (nmemb == 0 || size == 0)
return 0;
size*=nmemb;
// if an overflow occurred, size/nmemb will not equal original_size
if (size/nmemb != original_size)
return 0;
if((ptr=malloc(size))!=NULL)
memset(ptr,0,size);
return ptr;
}
//! free all blocks allocated by the current process.
/*! called by exit() and kmain().
*/
void mm_reaper() {
size_t *ptr;
// pass 1: mark as free
ptr=&mm_start;
while(ptr>=&mm_start) {
if(*ptr==(size_t)ctid)
*ptr=MM_FREE;
ptr+=*(ptr+1)+MM_HEADER_SIZE;
}
// pass 2: defragment free areas
// this may alter free blocks
mm_defrag();
}
//! return the number of bytes of unallocated memory
int mm_free_mem(void) {
int free = 0;
size_t *ptr;
#ifdef CONF_TM
ENTER_KERNEL_CRITICAL_SECTION();
#endif
// Iterate through the free list
for (ptr = mm_first_free;
ptr >= &mm_start;
ptr += *(ptr+1) + MM_HEADER_SIZE)
free += *(ptr+1);
#ifdef CONF_TM
LEAVE_KERNEL_CRITICAL_SECTION();
#endif
return free*2;
}
#endif
|