File: hammondchorus.c

package info (click to toggle)
bristol 0.60.10-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 15,652 kB
  • sloc: ansic: 124,457; sh: 10,579; makefile: 111
file content (619 lines) | stat: -rw-r--r-- 17,694 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619

/*
 *  Diverse Bristol audio routines.
 *  Copyright (c) by Nick Copeland <nickycopeland@hotmail.com> 1996,2012
 *
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, see <http://www.gnu.org/licenses/>.
 *
 */

/*#define DEBUG */

#include <math.h>

#include "bristol.h"
#include "hammondchorus.h"

#define DELAY		0
#define FILTER		1
#define DEPTH		2
#define GAIN		3
#define VC			4

#define OPNAME "HammondChorus"
#define OPDESCRIPTION "Hammond Chorus"
#define PCOUNT 6
#define IOCOUNT 2

#define HCHORUS_IN_IND 0
#define HCHORUS_OUT_IND 1

int scanrate = 172;

static void fillGainTable(float *, int);
static void fillDrainTable(float *, int);
float *upgain = NULL;
float *downgain = NULL;

/*
 * Three different taps rates for V1/V2/V3, fast and shallow to slow and deep,
 * then we mix them for chorus. They are also staggered to reduce matches and
 * there is a null (non moving) tap for some of the depths.
int atap[32]= {0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,7,7,6,6,5,5,4,4,3,3,2,2,1,1};
int btap[32]= {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,7,7,6,6,5,5,4,4,3,3,2,2,1,1,0};
 */
int atap[32]= {0,1,2,3,4,5,6,7,8,7,6,5,4,3,2,1,0,1,2,3,4,5,6,7,8,7,6,5,4,3,2,1};
int btap[32]= {1,2,3,4,5,6,7,8,7,6,5,4,3,2,1,0,1,2,3,4,5,6,7,8,7,6,5,4,3,2,1,0};

int ctap[32]= {3,3,2,2,1,1,0,0,1,1,2,2,3,3,4,4,3,3,2,2,1,1,0,0,1,1,2,2,3,3,4,4};
int dtap[32]= {3,2,2,1,1,0,0,1,1,2,2,3,3,4,4,3,3,2,2,1,1,0,0,1,1,2,2,3,3,4,4,3};

int etap[32]= {4,4,5,5,6,6,7,7,8,8,7,7,6,6,5,5,4,4,5,5,6,6,7,7,8,8,7,7,6,6,5,5};
int ftap[32]= {4,5,5,6,6,7,7,8,8,7,7,6,6,5,5,4,4,5,5,6,6,7,7,8,8,7,7,6,6,5,5,4};

int ztap[32]= {7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7};

//int *tap1, *tap2, *tap3, *tap4, *tap5, *tap6;
int *tap1 = NULL, *tap2 = NULL, *tap3 = NULL;
int *tap4 = NULL, *tap5 = NULL, *tap6 = NULL;

//float tapgain[TAPS] = {1.5, 2, 2.5, 3.0, 3.5, 4, 4.5, 5, 5.5};
/* As the filtering goes up the signal gain goes down, so a small correction */
//float tapgain[TAPS] = {1.0, 1.03, 1.06, 1.09, 1.12, 1.15, 1.18, 1.21, 1.24};
float tapgain[TAPS] = {1.0, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08};

/* float tapfilt[TAPS] = {0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55}; */
/* These get reset anyway, the are a cummulative multiplication */
float tapfilt[TAPS] = {0.99, 0.98, 0.97, 0.96, 0.95, 0.94, 0.93, 0.92, 0.91};

/*
 * Reset any local memory information.
 */
static int destroy(bristolOP *operator)
{
#ifdef BRISTOL_DBG
	printf("destroy(%x)\n", operator);
#endif

	bristolfree(operator->specs);

	cleanup(operator);
	return(0);
}

static int reDelay = 0;

/*
 * This is called by the frontend when a parameter is changed.
static int param(param, value)
 */
static int param(bristolOP *operator, bristolOPParams *param,
	unsigned char index, float value)
{
	int i;
#ifdef DEBUG
	printf("hvcParams(%i, %f)\n", index, value);
#endif

	/*
	 * We need few parameters. Speed will be a value in sample for which we
	 * linger on any given tap, and Phase will control the lag of the LC phase
	 * shifting filter. May add a parameter for the duration of any crossover
	 * from one tap to the next.
	 */
	switch (index) {
		case 0:
			/*
			 * See if this really is a new value - we have to dump our history
			 * memory when it changes so if it can be avoided then better
			 */
			value = value * 6 + 1;

			/*
			 * Slight delay line is used to emphasise the RC delay line.
			if ((param->param[index].int_val = value * HISTSIZE) <= 0)
				param->param[index].int_val = 1;
			 *
			 * Since large values sound pretty gruesome we are going to firstly
			 * limit it to some small range, 16 samples at the moment. We also
			 * need to consider using some resampling as that would improve the
			 * sonic range.
printf("DL: %i/%0.4f\n",
param->param[index].int_val, param->param[index].float_val);
			 */
			reDelay = 1;
			param->param[index].float_val = value;
			switch (param->param[DEPTH].int_val) {
				case 1:
					if ((param->param[0].int_val
						= (param->param[0].float_val * 0.5)) < 2)
						param->param[0].int_val = 2;
					break;
				case 2:
					if ((param->param[0].int_val
						= 1 + (param->param[0].float_val)) < 3)
						param->param[0].int_val = 3;
					break;
				case 3:
					if ((param->param[0].int_val
						= 1 + (param->param[0].float_val * 2)) < 4)
						param->param[0].int_val = 4;
					break;
			}
			break;
		case 1:
			/*
			 * LC lag
			 */
			param->param[index].float_val = value;
			tapfilt[0] = value;
			for (i = 1; i < TAPS; i++)
				tapfilt[i] = tapfilt[i-1] * value;
			/*
			tapgain[0] = 1.0 / value;
			for (i = 1; i < TAPS; i++)
				tapgain[i] = tapgain[i-1] / value;
			*/
			break;
		case DEPTH:
			/*
			 * VibraChorus.
			 */
			param->param[index].int_val = value * CONTROLLER_RANGE;

			switch (param->param[index].int_val) {
				case 1:
					param->param[index].float_val = 0.10;
					tap1 = atap;
					tap2 = btap;
					tap3 = ztap;
					tap4 = ztap;
					tap5 = ztap;
					tap6 = ztap;
					reDelay = 1;
					if ((param->param[0].int_val
						= (param->param[0].float_val * 0.5)) < 2)
						param->param[0].int_val = 2;
					break;
				case 2:
					param->param[index].float_val = 0.95;
					tap1 = etap;
					tap2 = ftap;
					tap3 = ztap;
					tap4 = ztap;
					tap5 = atap;
					tap6 = btap;
					reDelay = 1;
					if ((param->param[0].int_val
						= 1 + (param->param[0].float_val)) < 3)
						param->param[0].int_val = 3;
					break;
				case 3:
					param->param[index].float_val = 0.90;
					tap1 = etap;
					tap2 = ftap;
					tap3 = ctap;
					tap4 = dtap;
					tap5 = atap;
					tap6 = btap;
					reDelay = 1;
					if ((param->param[0].int_val
						= 1 + (param->param[0].float_val * 2)) < 3)
						param->param[0].int_val = 3;
					break;
			}
			return(0);
			switch (param->param[index].int_val) {
				case 1:
					param->param[index].float_val = 0.99;
					tap1 = ctap;
					tap2 = dtap;
					tap3 = atap;
					tap4 = btap;
					tap5 = ztap;
					tap6 = ztap;
					break;
				case 2:
					param->param[index].float_val = 0.95;
					tap1 = ctap;
					tap2 = dtap;
					tap3 = atap;
					tap4 = btap;
					tap5 = ztap;
					tap6 = ztap;
					break;
				case 3:
					param->param[index].float_val = 0.90;
					tap1 = etap;
					tap2 = ftap;
					tap3 = ctap;
					tap4 = dtap;
					tap5 = atap;
					tap6 = btap;
					break;
			}
			break;
		case 3:
			/*
			 * 3 is gain.
			 */
			param->param[index].float_val = value;
			break;
		case 4:
			/*
			 * VC
			 */
			param->param[index].int_val = value * CONTROLLER_RANGE;
			break;
		case 5:
			scanrate = 65 + (1.0 - value) * 256;
			if (upgain == NULL)
				break;

			fillGainTable(upgain, scanrate);
			fillDrainTable(downgain, scanrate);

			break;
	}

	return(0);
}

/*
 * Reset any local memory information.
 */
static int reset(bristolOP *operator, bristolOPParams *param)
{
#ifdef BRISTOL_DBG
	printf("reset(%x)\n", operator);
#endif
	if (param->param[0].mem)
		bristolfree(param->param[0].mem);

	param->param[0].mem = bristolmalloc0(sizeof(float) * MEMSIZE);

	param->param[0].int_val = 1024;
	param->param[1].float_val = 0.1;
	param->param[2].int_val = 1;
	param->param[3].float_val = 0.8;
	return(0);
}

/*
 * This was derived from the bristol vibra chorus. The original was just a 
 * variable length resampled delay line. It worked, but it did not have the
 * real depth of the hammond chorus.
 *
 * This implementation will be closer to the original, implementing 8 cascaded
 * LC filters which introduce a phase and frequency change, and a tap that 
 * links to each for a period of time. The result will pass through another
 * final filter to remove pops as the 'rotor' crosses between taps. May consider
 * crossing them over smoothly depending on the results.
 *
 * Worked quite well except that the filtering effects are deeper than the 
 * phasing effects due to the filter characteristics - there is a lot more 
 * filtering than phase shifting.
 *
 * To improve it we are going to use 8 cascaded delay lines with a fixed delay
 * and change the filtering out of each tap to emulate the Hammond cascade.
 */
static int operate(bristolOP *operator,
	bristolVoice *voice,
	bristolOPParams *param,
	void *lcl)
{
	bristolHCHORUS *specs;
	bristolHCHORUSlocal *local = (bristolHCHORUSlocal *) lcl;
	register float *source, *dest;
	register int count, i, j;
	register int rate, chorus, tap, tcount;
	register float g1, g2, g3, g4, g5, g6, gain, *history, ph, rs, depth;
	register bristolHCTap *phase;

	specs = (bristolHCHORUS *) operator->specs;

	count = specs->spec.io[HCHORUS_OUT_IND].samplecount;
	source = specs->spec.io[HCHORUS_IN_IND].buf;
	dest = specs->spec.io[HCHORUS_OUT_IND].buf;

	/*
	 * operational parameters.
	 *
	 * Rate just defines the delay of the phases.
	 */
	rate = param->param[DELAY].int_val;
	rs = param->param[DELAY].float_val;
	chorus = param->param[VC].int_val;
	gain = param->param[GAIN].float_val;
	depth = param->param[DEPTH].float_val;

	history = param->param[0].mem;

	if (reDelay)
	{
		/*
		 * Rate has changed so also need to rework the delay line taps.
		 */
		reDelay = 0;
		for (i = 0; i < TAPS; i++)
		{
			local->mcur[i] = local->mstart[i] = (i + 1) * rate;
			local->mend[i] = local->mstart[i] + rate;
		}
		local->mcur[TAPS] = 0;
		ph = *source;
	} else
		ph = local->ph;

#ifdef DEBUG
	printf("hammondchorus(%i, %1.2f, %i)\n", rate, chorus);
#endif

	tap = local->ctap;
	phase = &local->phase[0];
	tcount = local->tcount;
	g1 = local->g1;
	g2 = local->g2;
	g3 = local->g3;
	g4 = local->g4;
	g5 = local->g5;
	g6 = local->g6;

	if (tap1 == NULL)
		return(0);

//printf("hammondchorus(%i, %i): %i, %i\n",
//rate, chorus, tcount, tap);

	/*
	 * We now need to take the input signal and separate it out into several
	 * stages. The original had 8 stages of delay, and that is emulated here,
	 * however it also contained a capacitive receiver that scanned each tap,
	 * and that introduced some smoothing between the phases. That is more
	 * work to emulate so we will use an extra tap and more phases such that
	 * some phases will be crossover between taps.
	 */
	for (i = 0; i < count; i++)
	{
		for (j = 0; j <= TAPS; j++)
		{
			if (--local->mcur[j] < 0)
				local->mcur[j] = MEMSIZE - 1;

			phase[j].out +=
				(history[local->mcur[j]] - phase[j].out) * tapfilt[j] * depth;
		}
		/*
		 * This is resampling but it does not currently work
		history[local->mcur[TAPS]] = *source * rs + ph * (1.0 - rs);
		history[local->mcur[TAPS]] = rs * (*source - ph) + ph;
		 */
		history[local->mcur[TAPS]] = *source;

		/*
		 * See if we need to move the tap forward. We seem to have 32 taps but
		 * that is not the case. There are 8 taps and 32 phases, the extra
		 * phases being used to crossover the signal to emulate the capacitive
		 * armature.
		 */
		if (++tcount >= scanrate) {
			tcount = 0;

			/*
			 * If we have been on this tap for a sufficient number of samples
			 * then move on.
			 */
			if (++tap >= 32)
				tap = 0;

			if (chorus) {
				g1 = tapgain[tap1[tap]] * (1.0 - gain);
				g2 = tapgain[tap2[tap]] * (1.0 - gain);
				g3 = tapgain[tap3[tap]] * (1.0 - gain);
				g4 = tapgain[tap4[tap]] * (1.0 - gain);
				g5 = tapgain[tap5[tap]] * (1.0 - gain);
				g6 = tapgain[tap6[tap]] * (1.0 - gain);
			} else {
				g1 = tapgain[tap1[tap]];
				g2 = tapgain[tap2[tap]];
			}
		}

		if (chorus) {
			*dest++ = *source * gain
				+ (phase[tap1[tap]].out * downgain[tcount] * g1
				+ phase[tap2[tap]].out * upgain[tcount] * g2
				+ phase[tap3[tap]].out * downgain[tcount] * g3
				+ phase[tap4[tap]].out * upgain[tcount] * g4
				+ phase[tap5[tap]].out * downgain[tcount] * g5
				+ phase[tap6[tap]].out * upgain[tcount] * g6) * 0.5f;
		} else {
			*dest++ =
				(phase[tap1[tap]].out * downgain[tcount] * g1
				+ phase[tap2[tap]].out * upgain[tcount] * g2) * 0.7f;
		}

//		*dest++ = *source;

		ph = *(source++);
	}

	local->ctap = tap;
	local->tcount = tcount;
	local->g1 = g1;
	local->g2 = g2;
	local->g3 = g3;
	local->g4 = g4;
	local->g5 = g5;
	local->g6 = g6;
	local->ph = ph;

	return(0);
}

/*
 * This was derived from the bristol vibra chorus. The original was just a 
 * variable length resampled delay line. It worked, but it did not have the
 * real depth of the hammond chorus.
 *
 * This implementation will be closer to the original, implementing 8 cascaded
 * LC filters which introduce a phase and frequency change, and a tap that 
 * links to each for a period of time. The result will pass through another
 * final filter to remove pops as the 'rotor' crosses between taps. May consider
 * crossing them over smoothly depending on the results.
 *
 * Works quite well except that the filtering effects are deeper than the 
 * phasing effects due to the filter characteristics - there is a lot more 
 * filtering than phase shifting.
 */
static void
fillGainTable(float table[], int count)
{
	int i;
	float CROSS = 0.5f * M_PI / ((float) count);

	memset(table, 1.0f, 2048 * sizeof(float));
	for (i = 0; i < count; i++)
		table[i] = sinf(i * CROSS);
}
static void
fillDrainTable(float table[], int count)
{
	int i;
	float CROSS = 0.5f * M_PI / ((float) count);

	memset(table, 0.0f, 2048 * sizeof(float));
	for (i = 0; i < count; i++)
		table[i] = cosf(i * CROSS);
}

/*
 * Setup any variables in our OP structure, in our IO structures, and malloc
 * any memory we need.
 */
bristolOP *
hammondchorusinit(bristolOP **operator, int index, int samplerate, int samplecount)
{
	bristolHCHORUS *specs;

	*operator = bristolOPinit(operator, index, samplecount);

#ifdef BRISTOL_DBG
	printf("hammondchorusinit(%x(%x), %i, %i, %i)\n",
		operator, *operator, index, samplerate, samplecount);
#endif

	/*
	 * We only support a single scanning rate, 416 rpm which I think is the
	 * original rate give or take a few rpm. This translates to a scan rate
	 * through our 8 taps and back as follows. The use of 32 steps may look a
	 * bit odd, but we actually cross each tap a couple of times fading through
	 * to the next tap so the 8 forward stages and same 8 stages in reverse
	 * with two scans of each for the crossover gives us 32 stages.
	 */
	scanrate = samplerate * 60 / 416 / 32;

	/*
	 * Then the local parameters specific to this operator. These will be
	 * the same for each operator, but must be inited in the local code.
	 */
	(*operator)->operate = operate;
	(*operator)->destroy = destroy;
	(*operator)->reset = reset;
	(*operator)->param= param;

	specs = (bristolHCHORUS *) bristolmalloc0(sizeof(bristolHCHORUS));
	(*operator)->specs = (bristolOPSpec *) specs;
	(*operator)->size = sizeof(bristolHCHORUS);

	upgain = (float *) bristolmalloc0(sizeof(float) * 2048);
	downgain = (float *) bristolmalloc0(sizeof(float) * 2048);

	fillGainTable(upgain, scanrate);
	fillDrainTable(downgain, scanrate);

	/*
	 * These are specific to this operator, and will need to be altered for
	 * each operator.
	 */
	specs->spec.opname = OPNAME;
	specs->spec.description = OPDESCRIPTION;
	specs->spec.pcount = PCOUNT;
	specs->spec.iocount = IOCOUNT;
	specs->spec.localsize = sizeof(bristolHCHORUSlocal);

	/*
	 * Now fill in the specs for this operator.
	 */
	specs->spec.param[0].pname = "Delay";
	specs->spec.param[0].description= "Tap delay";
	specs->spec.param[0].type = BRISTOL_FLOAT;
	specs->spec.param[0].low = 0;
	specs->spec.param[0].high = 1;
	specs->spec.param[0].flags = BRISTOL_ROTARY|BRISTOL_SLIDER;

	specs->spec.param[1].pname = "Damping";
	specs->spec.param[1].description = "Tap signal damping (rc filter)";
	specs->spec.param[1].type = BRISTOL_FLOAT;
	specs->spec.param[1].low = 0;
	specs->spec.param[1].high = 1;
	specs->spec.param[1].flags = BRISTOL_ROTARY|BRISTOL_SLIDER;

	specs->spec.param[2].pname = "Vibra";
	specs->spec.param[2].description = "Depth of modulation";
	specs->spec.param[2].type = BRISTOL_INT;
	specs->spec.param[2].low = 0;
	specs->spec.param[2].high = 1;
	specs->spec.param[2].flags = BRISTOL_BUTTON;

	specs->spec.param[3].pname = "Gain";
	specs->spec.param[3].description = "Wet/Dry signal mix";
	specs->spec.param[3].type = BRISTOL_INT;
	specs->spec.param[3].low = 0;
	specs->spec.param[3].high = 1;
	specs->spec.param[3].flags = BRISTOL_BUTTON;

	specs->spec.param[4].pname = "VC";
	specs->spec.param[4].description = "Vibra/Chorus";
	specs->spec.param[4].type = BRISTOL_INT;
	specs->spec.param[4].low = 0;
	specs->spec.param[4].high = 1;
	specs->spec.param[4].flags = BRISTOL_BUTTON;

	specs->spec.param[5].pname = "Rate";
	specs->spec.param[5].description = "Rotor speed";
	specs->spec.param[5].type = BRISTOL_FLOAT;
	specs->spec.param[5].low = 0;
	specs->spec.param[5].high = 1;
	specs->spec.param[5].flags = BRISTOL_ROTARY|BRISTOL_SLIDER;

	/*
	 * Now fill in the IO specs.
	 */
	specs->spec.io[0].ioname = "input";
	specs->spec.io[0].description = "Input signal";
	specs->spec.io[0].samplerate = samplerate;
	specs->spec.io[0].samplecount = samplecount;
	specs->spec.io[0].flags = BRISTOL_AC|BRISTOL_INPUT;

	specs->spec.io[1].ioname = "output";
	specs->spec.io[1].description = "output signal";
	specs->spec.io[1].samplerate = samplerate;
	specs->spec.io[1].samplecount = samplecount;
	specs->spec.io[1].flags = BRISTOL_AC|BRISTOL_OUTPUT;

	return(*operator);
}