File: notes_pcm.c

package info (click to toggle)
brltty 6.7-3.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 31,240 kB
  • sloc: ansic: 148,859; java: 13,418; sh: 9,623; xml: 5,699; tcl: 2,634; makefile: 2,333; awk: 713; lisp: 366; python: 321; ml: 301
file content (269 lines) | stat: -rw-r--r-- 8,510 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/*
 * BRLTTY - A background process providing access to the console screen (when in
 *          text mode) for a blind person using a refreshable braille display.
 *
 * Copyright (C) 1995-2024 by The BRLTTY Developers.
 *
 * BRLTTY comes with ABSOLUTELY NO WARRANTY.
 *
 * This is free software, placed under the terms of the
 * GNU Lesser General Public License, as published by the Free Software
 * Foundation; either version 2.1 of the License, or (at your option) any
 * later version. Please see the file LICENSE-LGPL for details.
 *
 * Web Page: http://brltty.app/
 *
 * This software is maintained by Dave Mielke <dave@mielke.cc>.
 */

#include "prologue.h"

#include <string.h>
#include <errno.h>

#include "prefs.h"
#include "log.h"
#include "pcm.h"
#include "notes.h"

char *opt_pcmDevice;

struct NoteDeviceStruct {
  PcmDevice *pcm;

  int blockSize;
  int sampleRate;
  int channelCount;
  PcmAmplitudeFormat amplitudeFormat;

  unsigned char *blockAddress;
  int blockUsed;

  PcmSampleMaker makeSample;
};

static int
pcmFlushBytes (NoteDevice *device) {
  int ok = writePcmData(device->pcm, device->blockAddress, device->blockUsed);
  if (ok) device->blockUsed = 0;
  return ok;
}

static int
pcmWriteSample (NoteDevice *device, int16_t amplitude) {
  PcmSample *sample = (PcmSample *)&device->blockAddress[device->blockUsed];
  PcmSampleSize size = device->makeSample(sample, amplitude);
  device->blockUsed += size;

  for (int channel=1; channel<device->channelCount; channel+=1) {
    for (int byte=0; byte<size; byte+=1) {
      device->blockAddress[device->blockUsed++] = sample->bytes[byte];
    }
  }

  if (device->blockUsed == device->blockSize) {
    if (!pcmFlushBytes(device)) {
      return 0;
    }
  }

  return 1;
}

static int
pcmFlushBlock (NoteDevice *device) {
  while (device->blockUsed)
    if (!pcmWriteSample(device, 0))
      return 0;

  return 1;
}

static NoteDevice *
pcmConstruct (int errorLevel) {
  NoteDevice *device;

  if ((device = malloc(sizeof(*device)))) {
    memset(device, 0, sizeof(*device));

    if ((device->pcm = openPcmDevice(errorLevel, opt_pcmDevice))) {
      device->blockSize = getPcmBlockSize(device->pcm);
      device->sampleRate = getPcmSampleRate(device->pcm);
      device->channelCount = getPcmChannelCount(device->pcm);
      device->amplitudeFormat = getPcmAmplitudeFormat(device->pcm);

      device->blockUsed = 0;
      device->makeSample = getPcmSampleMaker(device->amplitudeFormat);

      PcmSample sample;
      PcmSampleSize sampleSize = device->makeSample(&sample, 0);
      sampleSize *= device->channelCount;

      if (sampleSize && device->blockSize &&
          !(device->blockSize % sampleSize)) {
        if ((device->blockAddress = malloc(device->blockSize))) {
          logMessage(LOG_DEBUG, "PCM enabled: BlkSz:%d Rate:%d ChnCt:%d Fmt:%d",
                     device->blockSize, device->sampleRate, device->channelCount, device->amplitudeFormat);
          return device;
        } else {
          logMallocError();
        }
      } else {
        logMessage(LOG_ERR,
                   "PCM block size not multiple of sample size:"
                   " BlkSz:%d" " SmpSz:%u",
                   device->blockSize, sampleSize);
      }

      closePcmDevice(device->pcm);
    }

    free(device);
  } else {
    logMallocError();
  }

  logMessage(LOG_DEBUG, "PCM not available");
  return NULL;
}

static void
pcmDestruct (NoteDevice *device) {
  pcmFlushBlock(device);
  free(device->blockAddress);
  closePcmDevice(device->pcm);
  free(device);
  logMessage(LOG_DEBUG, "PCM disabled");
}

static int
pcmTone (NoteDevice *device, unsigned int duration, NoteFrequency frequency) {
  int32_t sampleCount = device->sampleRate * duration / 1000;

  logMessage(LOG_DEBUG, "tone: MSecs:%u SmpCt:%"PRId32 " Freq:%"PRIfreq,
             duration, sampleCount, frequency);

  if (frequency) {
    /* A triangle waveform sounds nice, is lightweight, and avoids
     * relying too much on floating-point performance and/or on
     * expensive math functions like sin(). Considerations like
     * these are especially important on PDAs without any FPU.
     */ 

    /* We need to know the maximum amplitude based on the currently set
     * volume percentage. This percentage then needs to be squared because
     * we perceive loudness exponentially.
     */
    const unsigned char fullVolume = 100;
    const unsigned char currentVolume = MIN(fullVolume, prefs.pcmVolume);
    const int32_t maximumAmplitude = INT16_MAX
                                   * (currentVolume * currentVolume)
                                   / (fullVolume * fullVolume);

    /* The calculations for triangle wave generation work out nicely and
     * efficiently if we map a full period onto a 32-bit unsigned range.
     */

    /* The two high-order bits specify which quarter wave a sample is for.
     *   00 -> ascending from the negative peak to zero
     *   01 -> ascending from zero to the positive peak
     *   10 -> descending from the positive peak to zero
     *   11 -> descending from zero to the negative peak
     * The higher bit is 0 for the ascending segment and 1 for the
     * descending segment. The lower bit is 0 when going from a peak to
     * zero and 1 when going from zero to a peak.
     */
    const uint8_t magnitudeWidth = 32 - 2;

    /* The amplitude is 0 when the lower bit of the quarter wave indicator
     * is 1 and the rest of the (magnitude) bits are all 0.
     */
    const uint32_t zeroValue = UINT32_C(1) << magnitudeWidth;

    /* We need to know how many steps to make from one sample to the next.
     * stepsPerSample = stepsPerWave * wavesPerSecond / samplesPerSecond
     *                = stepsPerWave * frequency / sampleRate
     *                = stepsPerWave / sampleRate * frequency
     */
    const uint32_t stepsPerSample = (NoteFrequency)UINT32_MAX 
                                  / (NoteFrequency)device->sampleRate
                                  * frequency;

    /* The current value needs to be a signed value so that the >> operator
     * will extend its sign bit. We start by initializing it to the value
     * that corresponds to the start of the first logical quarter wave
     * (the one that ascends from zero to the positive peak).
     */
    int32_t currentValue = zeroValue;

    /* Round the number of samples up to a whole number of periods:
     * partialSteps = (sampleCount * stepsPerSample) % stepsPerWave
     *
     * With stepsPerWave being (1 << 32), we simply let the product
     * overflow. The modulus corresponds to the remaining 32 low bits:
     * partialSteps = (uint32_t)(sampleCount * stepsPerSample)
     *
     * missingSteps = stepsPerWave - partialSteps
     *              = (uint32_t) -partialSteps

     * extraSamples = missingSteps / stepsPerSample
     */
    sampleCount += (uint32_t)(sampleCount * -stepsPerSample) / stepsPerSample;

    while (sampleCount > 0) {
      /* Convert the current 32-bit unsigned linear value to a 31-bit
       * triangular amplitude by inverting its low-order 31 bits if its
       * high-order (sign) bit is set.
       */
      int32_t amplitude = currentValue ^ (currentValue >> 31);

      /* Convert the 31-bit amplitude from unsigned to signed. */
      amplitude -= zeroValue;

      /* Convert the amplitude's magnitude from 30 bits to 16 bits. */
      amplitude >>= magnitudeWidth - 16;

      /* Adjust the 17-bit signed amplitude (sign bit + 16-bit value) by
       * the currently set volume (15-bit value):
       * (16-bit value) * (15-bit value) + (sign bit) = 32-bit signed value
       */
      amplitude *= maximumAmplitude;

      /* Convert the signed amplitude from 32 bits to 16 bits. */
      amplitude >>= 16;

      if (!pcmWriteSample(device, amplitude)) break;
      currentValue += stepsPerSample;
      sampleCount -= 1;
    }
  } else {
    /* generate silence */
    while (sampleCount > 0) {
      if (!pcmWriteSample(device, 0)) break;
      sampleCount -= 1;
    }
  }

  return (sampleCount > 0) ? 0 : 1;
}

static int
pcmNote (NoteDevice *device, unsigned int duration, unsigned char note) {
  return pcmTone(device, duration, getNoteFrequency(note));
}

static int
pcmFlush (NoteDevice *device) {
  int ok = pcmFlushBlock(device);
  if (ok) pushPcmOutput(device->pcm);
  return ok;
}

const NoteMethods pcmNoteMethods = {
  .construct = pcmConstruct,
  .destruct = pcmDestruct,

  .tone = pcmTone,
  .note = pcmNote,
  .flush = pcmFlush
};