1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
/* $NetBSD: bdinit.c,v 1.4 1997/10/10 13:36:01 lukem Exp $ */
/*
* Copyright (c) 1994
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Ralph Campbell.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#ifndef lint
#if 0
static char sccsid[] = "from: @(#)bdinit.c 8.2 (Berkeley) 5/3/95";
#else
__RCSID("$NetBSD: bdinit.c,v 1.4 1997/10/10 13:36:01 lukem Exp $");
#endif
#endif /* not lint */
#include <string.h>
#include "gomoku.h"
void
bdinit(bp)
struct spotstr *bp;
{
int i, j, r;
struct spotstr *sp;
struct combostr *cbp;
movenum = 1;
/* mark the borders as such */
sp = bp;
for (i = BSZ2; --i >= 0; sp++) {
sp->s_occ = BORDER; /* top border */
sp->s_flg = BFLAGALL;
}
/* fill entire board with EMPTY spots */
memset(frames, 0, sizeof(frames));
cbp = frames;
for (j = 0; ++j < BSZ1; sp++) { /* for each row */
for (i = 0; ++i < BSZ1; sp++) { /* for each column */
sp->s_occ = EMPTY;
sp->s_flg = 0;
sp->s_wval = 0;
if (j < 5) {
/* directions 1, 2, 3 are blocked */
sp->s_flg |= (BFLAG << 1) | (BFLAG << 2) |
(BFLAG << 3);
sp->s_fval[BLACK][1].s = MAXCOMBO;
sp->s_fval[BLACK][2].s = MAXCOMBO;
sp->s_fval[BLACK][3].s = MAXCOMBO;
sp->s_fval[WHITE][1].s = MAXCOMBO;
sp->s_fval[WHITE][2].s = MAXCOMBO;
sp->s_fval[WHITE][3].s = MAXCOMBO;
} else if (j == 5) {
/* five spaces, blocked on one side */
sp->s_fval[BLACK][1].s = 0x500;
sp->s_fval[BLACK][2].s = 0x500;
sp->s_fval[BLACK][3].s = 0x500;
sp->s_fval[WHITE][1].s = 0x500;
sp->s_fval[WHITE][2].s = 0x500;
sp->s_fval[WHITE][3].s = 0x500;
} else {
/* six spaces, not blocked */
sp->s_fval[BLACK][1].s = 0x401;
sp->s_fval[BLACK][2].s = 0x401;
sp->s_fval[BLACK][3].s = 0x401;
sp->s_fval[WHITE][1].s = 0x401;
sp->s_fval[WHITE][2].s = 0x401;
sp->s_fval[WHITE][3].s = 0x401;
}
if (i > (BSZ - 4)) {
/* directions 0, 1 are blocked */
sp->s_flg |= BFLAG | (BFLAG << 1);
sp->s_fval[BLACK][0].s = MAXCOMBO;
sp->s_fval[BLACK][1].s = MAXCOMBO;
sp->s_fval[WHITE][0].s = MAXCOMBO;
sp->s_fval[WHITE][1].s = MAXCOMBO;
} else if (i == (BSZ - 4)) {
sp->s_fval[BLACK][0].s = 0x500;
sp->s_fval[WHITE][0].s = 0x500;
/* if direction 1 is not blocked */
if (!(sp->s_flg & (BFLAG << 1))) {
sp->s_fval[BLACK][1].s = 0x500;
sp->s_fval[WHITE][1].s = 0x500;
}
} else {
sp->s_fval[BLACK][0].s = 0x401;
sp->s_fval[WHITE][0].s = 0x401;
if (i < 5) {
/* direction 3 is blocked */
sp->s_flg |= (BFLAG << 3);
sp->s_fval[BLACK][3].s = MAXCOMBO;
sp->s_fval[WHITE][3].s = MAXCOMBO;
} else if (i == 5 &&
!(sp->s_flg & (BFLAG << 3))) {
sp->s_fval[BLACK][3].s = 0x500;
sp->s_fval[WHITE][3].s = 0x500;
}
}
/*
* Allocate a frame structure for non blocked frames.
*/
for (r = 4; --r >= 0; ) {
if (sp->s_flg & (BFLAG << r))
continue;
cbp->c_combo.s = sp->s_fval[BLACK][r].s;
cbp->c_vertex = sp - board;
cbp->c_nframes = 1;
cbp->c_dir = r;
sp->s_frame[r] = cbp;
cbp++;
}
}
sp->s_occ = BORDER; /* left & right border */
sp->s_flg = BFLAGALL;
}
/* mark the borders as such */
for (i = BSZ1; --i >= 0; sp++) {
sp->s_occ = BORDER; /* bottom border */
sp->s_flg = BFLAGALL;
}
sortframes[BLACK] = (struct combostr *)0;
sortframes[WHITE] = (struct combostr *)0;
init_overlap();
}
/*
* Initialize the overlap array.
* Each entry in the array is a bit mask with eight bits corresponding
* to whether frame B overlaps frame A (as indexed by overlap[A * FAREA + B]).
* The eight bits coorespond to whether A and B are open ended (length 6) or
* closed (length 5).
* 0 A closed and B closed
* 1 A closed and B open
* 2 A open and B closed
* 3 A open and B open
* 4 A closed and B closed and overlaps in more than one spot
* 5 A closed and B open and overlaps in more than one spot
* 6 A open and B closed and overlaps in more than one spot
* 7 A open and B open and overlaps in more than one spot
* As pieces are played, it can make frames not overlap if there are no
* common open spaces shared between the two frames.
*/
void
init_overlap()
{
struct spotstr *sp1, *sp2;
struct combostr *cbp;
int i, f, r, n, d1, d2;
int mask, bmask, vertex, s;
u_char *str;
short *ip;
memset(overlap, 0, sizeof(overlap));
memset(intersect, 0, sizeof(intersect));
str = &overlap[FAREA * FAREA];
ip = &intersect[FAREA * FAREA];
for (cbp = frames + FAREA; --cbp >= frames; ) { /* each frame */
str -= FAREA;
ip -= FAREA;
sp1 = &board[vertex = cbp->c_vertex];
d1 = dd[r = cbp->c_dir];
/*
* s = 5 if closed, 6 if open.
* At this point black & white are the same.
*/
s = 5 + sp1->s_fval[BLACK][r].c.b;
/* for each spot in frame A */
for (i = 0; i < s; i++, sp1 += d1, vertex += d1) {
/* the sixth spot in frame A only overlaps if it is open */
mask = (i == 5) ? 0xC : 0xF;
/* for each direction */
for (r = 4; --r >= 0; ) {
bmask = BFLAG << r;
sp2 = sp1;
d2 = dd[r];
/* for each frame that intersects at spot sp1 */
for (f = 0; f < 6; f++, sp2 -= d2) {
if (sp2->s_occ == BORDER)
break;
if (sp2->s_flg & bmask)
continue;
n = sp2->s_frame[r] - frames;
ip[n] = vertex;
str[n] |= (f == 5) ? mask & 0xA : mask;
if (r == cbp->c_dir) {
/* compute the multiple spot overlap values */
switch (i) {
case 0: /* sp1 is the first spot in A */
if (f == 4)
str[n] |= 0xA0;
else if (f != 5)
str[n] |= 0xF0;
break;
case 1: /* sp1 is the second spot in A */
if (f == 5)
str[n] |= 0xA0;
else
str[n] |= 0xF0;
break;
case 4: /* sp1 is the penultimate spot in A */
if (f == 0)
str[n] |= 0xC0;
else
str[n] |= 0xF0;
break;
case 5: /* sp1 is the last spot in A */
if (f == 1)
str[n] |= 0xC0;
else if (f != 0)
str[n] |= 0xF0;
break;
default:
str[n] |= 0xF0;
}
}
}
}
}
}
}
|