1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
/* $NetBSD: move.c,v 1.6 2003/08/07 09:37:52 agc Exp $ */
/*
* Copyright (c) 1980, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#ifndef lint
#if 0
static char sccsid[] = "@(#)move.c 8.1 (Berkeley) 5/31/93";
#else
__RCSID("$NetBSD: move.c,v 1.6 2003/08/07 09:37:52 agc Exp $");
#endif
#endif /* not lint */
#include <stdio.h>
#include <math.h>
#include "trek.h"
/*
** Move Under Warp or Impulse Power
**
** `Ramflag' is set if we are to be allowed to ram stars,
** Klingons, etc. This is passed from warp(), which gets it from
** either play() or ram(). Course is the course (0 -> 360) at
** which we want to move. `Speed' is the speed we
** want to go, and `time' is the expected time. It
** can get cut short if a long range tractor beam is to occur. We
** cut short the move so that the user doesn't get docked time and
** energy for distance which he didn't travel.
**
** We check the course through the current quadrant to see that he
** doesn't run into anything. After that, though, space sort of
** bends around him. Note that this puts us in the awkward posi-
** tion of being able to be dropped into a sector which is com-
** pletely surrounded by stars. Oh Well.
**
** If the SINS (Space Inertial Navigation System) is out, we ran-
** domize the course accordingly before ever starting to move.
** We will still move in a straight line.
**
** Note that if your computer is out, you ram things anyway. In
** other words, if your computer and sins are both out, you're in
** potentially very bad shape.
**
** Klingons get a chance to zap you as you leave the quadrant.
** By the way, they also try to follow you (heh heh).
**
** Return value is the actual amount of time used.
**
**
** Uses trace flag 4.
*/
double move(ramflag, course, time, speed)
int ramflag;
int course;
double time;
double speed;
{
double angle;
double x, y, dx, dy;
int ix = 0, iy = 0;
double bigger;
int n;
int i;
double dist;
double sectsize;
double xn;
double evtime;
# ifdef xTRACE
if (Trace)
printf("move: ramflag %d course %d time %.2f speed %.2f\n",
ramflag, course, time, speed);
# endif
sectsize = NSECTS;
/* initialize delta factors for move */
angle = course * 0.0174532925;
if (damaged(SINS))
angle += Param.navigcrud[1] * (franf() - 0.5);
else
if (Ship.sinsbad)
angle += Param.navigcrud[0] * (franf() - 0.5);
dx = -cos(angle);
dy = sin(angle);
bigger = fabs(dx);
dist = fabs(dy);
if (dist > bigger)
bigger = dist;
dx /= bigger;
dy /= bigger;
/* check for long range tractor beams */
/**** TEMPORARY CODE == DEBUGGING ****/
evtime = Now.eventptr[E_LRTB]->date - Now.date;
# ifdef xTRACE
if (Trace)
printf("E.ep = %p, ->evcode = %d, ->date = %.2f, evtime = %.2f\n",
Now.eventptr[E_LRTB], Now.eventptr[E_LRTB]->evcode,
Now.eventptr[E_LRTB]->date, evtime);
# endif
if (time > evtime && Etc.nkling < 3)
{
/* then we got a LRTB */
evtime += 0.005;
time = evtime;
}
else
evtime = -1.0e50;
dist = time * speed;
/* move within quadrant */
Sect[Ship.sectx][Ship.secty] = EMPTY;
x = Ship.sectx + 0.5;
y = Ship.secty + 0.5;
xn = NSECTS * dist * bigger;
n = xn + 0.5;
# ifdef xTRACE
if (Trace)
printf("dx = %.2f, dy = %.2f, xn = %.2f, n = %d\n", dx, dy, xn, n);
# endif
Move.free = 0;
for (i = 0; i < n; i++)
{
ix = (x += dx);
iy = (y += dy);
# ifdef xTRACE
if (Trace)
printf("ix = %d, x = %.2f, iy = %d, y = %.2f\n", ix, x, iy, y);
# endif
if (x < 0.0 || y < 0.0 || x >= sectsize || y >= sectsize)
{
/* enter new quadrant */
dx = Ship.quadx * NSECTS + Ship.sectx + dx * xn;
dy = Ship.quady * NSECTS + Ship.secty + dy * xn;
if (dx < 0.0)
ix = -1;
else
ix = dx + 0.5;
if (dy < 0.0)
iy = -1;
else
iy = dy + 0.5;
# ifdef xTRACE
if (Trace)
printf("New quad: ix = %d, iy = %d\n", ix, iy);
# endif
Ship.sectx = x;
Ship.secty = y;
compkldist(0);
Move.newquad = 2;
attack(0);
checkcond();
Ship.quadx = ix / NSECTS;
Ship.quady = iy / NSECTS;
Ship.sectx = ix % NSECTS;
Ship.secty = iy % NSECTS;
if (ix < 0 || Ship.quadx >= NQUADS || iy < 0 ||
Ship.quady >= NQUADS) {
if (!damaged(COMPUTER)) {
dumpme(0);
} else
lose(L_NEGENB);
}
initquad(0);
n = 0;
break;
}
if (Sect[ix][iy] != EMPTY)
{
/* we just hit something */
if (!damaged(COMPUTER) && ramflag <= 0)
{
ix = x - dx;
iy = y - dy;
printf("Computer reports navigation error; %s stopped at %d,%d\n",
Ship.shipname, ix, iy);
Ship.energy -= Param.stopengy * speed;
break;
}
/* test for a black hole */
if (Sect[ix][iy] == HOLE)
{
/* get dumped elsewhere in the galaxy */
dumpme(1);
initquad(0);
n = 0;
break;
}
ram(ix, iy);
break;
}
}
if (n > 0)
{
dx = Ship.sectx - ix;
dy = Ship.secty - iy;
dist = sqrt(dx * dx + dy * dy) / NSECTS;
time = dist / speed;
if (evtime > time)
time = evtime; /* spring the LRTB trap */
Ship.sectx = ix;
Ship.secty = iy;
}
Sect[Ship.sectx][Ship.secty] = Ship.ship;
compkldist(0);
return (time);
}
|