1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
#include "btas/tensor.h"
#include <btas/btas.h>
#include <btas/tarray.h>
#include "btas/tarray.h"
#include "btas/tensorview.h"
#include "btas/varray/allocators.h"
#include "test.h"
#include <ctime>
#include <algorithm>
#include <fstream>
#include <iostream>
#include <set>
#ifdef BTAS_HAS_BOOST_SERIALIZATION
#include <boost/archive/xml_iarchive.hpp>
#include <boost/archive/xml_oarchive.hpp>
#include <boost/serialization/complex.hpp>
#endif // BTAS_HAS_BOOST_SERIALIZATION
using std::cout;
using std::endl;
using btas::Range;
using btas::Tensor;
using DTensor = Tensor<double>;
using ZTensor = Tensor<std::complex<double>>;
template <typename T, typename A = std::allocator<T>> using ValTensor = Tensor<T, btas::DEFAULT::range, btas::varray<T, A>>;
using DValTensor = ValTensor<double>;
using ZValTensor = ValTensor<std::complex<double>>;
using namespace btas;
using namespace std;
double static rng() {
static boost::random::mt19937 rng(random_seed_accessor());
static auto dist = boost::random::uniform_real_distribution<double>{0., 1.};
return dist(rng);
}
static std::ostream& operator<<(std::ostream& s, const DTensor& X) {
for (auto i : X.range()) s << i << " " << X(i) << "\n";
return s;
}
// Set the elements of a Tensor T such that
// T(i,j,k) = 1ijk
// assuming individual dimensions are all less than 10.
// (The 1 in front is just a placeholder.)
void static fillEls(DTensor& T) {
if (T.rank() == 0) return;
const double base = pow(10., T.rank());
const size_t max_ii = T.rank() - 1;
for (auto I : T.range()) {
double& val = T(I);
val = base;
for (size_t ii = 0; ii <= max_ii; ++ii) {
val += I[ii] * pow(10., max_ii - ii);
}
}
}
template <typename T>
T randomReal() {
static boost::random::mt19937 rng(random_seed_accessor());
static auto dist = boost::random::uniform_real_distribution<T>{0., 1.};
return dist(rng);
}
TEST_CASE("Tensor Constructors") {
SECTION("Default Constructor") {
Tensor<double> T0;
CHECK(T0.size() == 0);
CHECK(T0.empty());
Tensor<int> T1;
CHECK(T1.size() == 0);
CHECK(T1.empty());
Tensor<bool> T2;
CHECK(T2.size() == 0);
CHECK(T2.empty());
Tensor<std::complex<double>> T3;
CHECK(T3.size() == 0);
CHECK(T3.empty());
}
SECTION("Extent Constructor") {
DTensor T0(2, 3, 4);
CHECK(T0.rank() == 3);
CHECK(T0.extent(0) == 2);
CHECK(T0.extent(1) == 3);
CHECK(T0.extent(2) == 4);
CHECK(T0.size() == 2 * 3 * 4);
CHECK(!T0.empty());
DTensor T1(6, 1, 2, 7, 9);
CHECK(T1.rank() == 5);
CHECK(T1.extent(0) == 6);
CHECK(T1.extent(1) == 1);
CHECK(T1.extent(2) == 2);
CHECK(T1.extent(3) == 7);
CHECK(T1.extent(4) == 9);
CHECK(T1.size() == 6 * 1 * 2 * 7 * 9);
CHECK(!T1.empty());
Tensor<int> Ti(2, 4, 5);
CHECK(Ti.rank() == 3);
CHECK(Ti.extent(0) == 2);
CHECK(Ti.extent(1) == 4);
CHECK(Ti.extent(2) == 5);
CHECK(Ti.size() == 2 * 4 * 5);
Tensor<std::complex<double>> Tc(3, 2, 9);
CHECK(Tc.rank() == 3);
CHECK(Tc.extent(0) == 3);
CHECK(Tc.extent(1) == 2);
CHECK(Tc.extent(2) == 9);
CHECK(Tc.size() == 3 * 2 * 9);
}
SECTION("Range Constructor") {
Range r0(2, 5, 3);
DTensor T0(r0);
CHECK(T0.rank() == 3);
CHECK(T0.extent(0) == 2);
CHECK(T0.extent(1) == 5);
CHECK(T0.extent(2) == 3);
Range r1(2, 5, 3, 9, 18, 6);
DTensor T1(r1);
CHECK(T1.rank() == 6);
// range + value
CHECK_NOTHROW(DTensor(r1, 1.2));
// range + vector of values
CHECK_NOTHROW(DTensor(r1, T1.data()));
}
SECTION("Fixed Rank Tensor") {
TArray<double, 3> T0(2, 4, 3);
CHECK(T0.rank() == 3);
CHECK(T0.size() == 24);
CHECK(T0.extent(0) == 2);
CHECK(T0.extent(1) == 4);
CHECK(T0.extent(2) == 3);
Range r1(2, 5, 3);
TArray<double, 3> T1(r1);
typedef TArray<double, 3>::range_type Range3; // rank-3 Range
Range3 r2(2, 5, 3);
TArray<double, 3> T2(r2);
CHECK(T1 == T2);
typedef TArray<double, 4>::range_type Range4; // rank-3 Range
Range4 r3(2, 5, 3, 4);
// TArray<double,3> T3(r3); // error: mismatched rank
}
}
TEST_CASE("Custom Tensor") {
SECTION("Storage") {
{
typedef Tensor<double, btas::DEFAULT::range, std::vector<double>> Tensor;
static_assert(std::is_same_v<DTensor::rebind_storage_t<std::vector<double>>, Tensor>);
Tensor T0;
Tensor T1(2, 3, 4);
}
{
typedef Tensor<double, btas::DEFAULT::range, btas::varray<double>> Tensor;
static_assert(std::is_same_v<DTensor::rebind_storage_t<btas::varray<double>>, Tensor>);
Tensor T0;
Tensor T1(2, 3, 4);
}
{
typedef Tensor<double, btas::DEFAULT::range, std::array<double, 24>>
Tensor;
static_assert(std::is_same_v<DTensor::rebind_storage_t<std::array<double, 24>>, Tensor>);
Tensor T0;
Tensor T1(2, 3, 4);
}
{
typedef Tensor<double, btas::DEFAULT::range, std::valarray<double>>
Tensor;
static_assert(std::is_same_v<DTensor::rebind_storage_t<std::valarray<double>>, Tensor>);
Tensor T0;
Tensor T1(2, 3, 4);
}
}
}
TEST_CASE("Tensor Operations") {
DTensor T0(1);
fillEls(T0);
DTensor T2(3, 2);
fillEls(T2);
DTensor T3(3, 2, 4);
fillEls(T3);
SECTION("Fill") {
T3.fill(1.);
for (auto x : T3) CHECK(x == 1);
}
SECTION("Element Access") {
CHECK(T3(2,1,3) == 1213);
CHECK(T3({2,1,3}) == 1213);
CHECK(T3.at(2,1,3) == 1213);
CHECK(T3.at(std::array{2,1,3}) == 1213);
CHECK(T3[2 * T3.range().stride_data()[0] + 1*T3.range().stride_data()[1] + 3 * T3.range().stride_data()[2]] == 1213);
CHECK(T3.at_ordinal(2 * T3.range().stride_data()[0] + 1*T3.range().stride_data()[1] + 3 * T3.range().stride_data()[2]) == 1213);
}
SECTION("Conversion to Scalar") {
CHECK_THROWS_AS( static_cast<double>(T2), btas::exception);
CHECK_NOTHROW( static_cast<double>(T0) == 11);
}
SECTION("Generate") {
std::vector<double> data(T3.size());
for (auto& x : data) x = rng();
size_t count = 0;
T3.generate([&]() { return data[count++]; });
auto it = T3.cbegin();
size_t j = 0;
for (; it != T3.cend(); ++j, ++it) {
CHECK(*it == data[j]);
}
}
SECTION("Tensor of Tensor") {
Tensor<Tensor<double>> A(4, 3);
Tensor<double> aval(2, 3);
aval.generate([]() { return randomReal<double>(); });
A.fill(aval);
Tensor<Tensor<double>> B(3, 2);
Tensor<double> bval(3, 4);
bval.generate([]() { return randomReal<double>(); });
B.fill(bval);
Tensor<Tensor<double>> C(4, 2);
C.fill(Tensor<double>(
2, 4)); // rank info is required to determine contraction ranks at gemm
btas::gemm(blas::Op::NoTrans, blas::Op::NoTrans, 1.0, A, B, 1.0, C);
Tensor<Tensor<double>> Ctest(4, 2);
Ctest.fill(Tensor<double>(2, 4));
for (size_t i0 = 0; i0 < A.extent(0); i0++)
for (size_t i1 = 0; i1 < A.extent(1); i1++)
for (size_t i2 = 0; i2 < B.extent(1); i2++)
btas::gemm(blas::Op::NoTrans, blas::Op::NoTrans, 1.0, A(i0, i1), B(i1, i2), 1.0,
Ctest(i0, i2));
const auto eps_double = 1.e4 * std::numeric_limits<double>::epsilon();
Ctest -= C;
CHECK(dot(Ctest, Ctest) < eps_double);
Tensor<Tensor<double>> Ctest1(4, 2);
Ctest1.fill(Tensor<double>(2, 4));
for (size_t i0 = 0; i0 < A.extent(0); i0++)
for (size_t i1 = 0; i1 < A.extent(1); i1++)
for (size_t i2 = 0; i2 < B.extent(1); i2++)
for (size_t j0 = 0; j0 < A(i0, i1).extent(0); j0++)
for (size_t j1 = 0; j1 < A(i0, i1).extent(1); j1++)
for (size_t j2 = 0; j2 < B(i1, i2).extent(1); j2++)
Ctest1(i0, i2)(j0, j2) += A(i0, i1)(j0, j1) * B(i1, i2)(j1, j2);
Ctest1 -= C;
CHECK(dot(Ctest1, Ctest1) < eps_double);
}
SECTION("Rebind") {
using TD = DTensor;
using TZ = ZTensor;
static_assert(std::is_same_v<TD::rebind_t<std::complex<double>>, TZ>);
static_assert(std::is_same_v<TD::rebind_numeric_t<std::complex<double>>, TZ>);
using TTD = Tensor<TD>;
using TTZ = Tensor<TZ>;
static_assert(std::is_same_v<TTD::rebind_t<std::complex<double>>, TZ>);
static_assert(std::is_same_v<TTD::rebind_numeric_t<std::complex<double>>, TTZ>);
// now with custom storage
static_assert(std::is_same_v<DValTensor::rebind_t<std::complex<double>>, ZValTensor>);
static_assert(std::is_same_v<DValTensor::rebind_numeric_t<std::complex<double>>, ZValTensor>);
static_assert(std::is_same_v<ValTensor<DValTensor>::rebind_t<std::complex<double>>, ZValTensor>);
static_assert(std::is_same_v<ValTensor<DValTensor>::rebind_numeric_t<std::complex<double>>, ValTensor<ZValTensor>>);
// now with custom storage and allocator
{
using TD = ValTensor<double, btas::stack_allocator<double>>;
using TZ = ValTensor<std::complex<double>, btas::stack_allocator<std::complex<double>>>;
static_assert(std::is_same_v<TD::rebind_t<std::complex<double>>, TZ>);
static_assert(std::is_same_v<TD::rebind_numeric_t<std::complex<double>>, TZ>);
using TTD = Tensor<TD>;
using TTZ = Tensor<TZ>;
static_assert(std::is_same_v<TTD::rebind_t<std::complex<double>>, Tensor<std::complex<double>>>); // N.B. outer Tensor != ValTensor
static_assert(std::is_same_v<TTD::rebind_numeric_t<std::complex<double>>, TTZ>);
}
}
#ifdef BTAS_HAS_BOOST_SERIALIZATION
SECTION("Serialization") {
const auto archive_fname = "tensor_operations.serialization.archive";
Tensor<std::array<complex<double>, 3>> T1(2, 3, 4);
T1.fill({{{1.0, 2.0}, {2.0, 1.0}, {2.0, 3.0}}});
// Tensor<double,3> t({-1,0,1},{2,4,3});
TArray<double, 3> t(2, 4, 3);
t.generate([]() { return randomReal<double>(); });
Tensor<Tensor<double>> A(4, 4);
Tensor<double> aval(2, 2);
aval.fill(1.0);
A.fill(aval);
// write
{
std::ofstream os(archive_fname);
assert(os.good());
boost::archive::xml_oarchive ar(os);
CHECK_NOTHROW(ar << BOOST_SERIALIZATION_NVP(t)); // fixed-size Tensor
CHECK_NOTHROW(ar << BOOST_SERIALIZATION_NVP(A)); // Tensor of Tensor
CHECK_NOTHROW(ar << BOOST_SERIALIZATION_NVP(T1)); // Tensor of complex datatypes
}
// read
{
std::ifstream is(archive_fname);
assert(is.good());
boost::archive::xml_iarchive ar(is);
TArray<double, 3> tcopy;
CHECK_NOTHROW(ar >> BOOST_SERIALIZATION_NVP(tcopy));
CHECK(t == tcopy);
Tensor<Tensor<double>> Acopy;
CHECK_NOTHROW(ar >> BOOST_SERIALIZATION_NVP(Acopy));
CHECK(A == Acopy);
Tensor<std::array<complex<double>, 3>> T1copy;
CHECK_NOTHROW(ar >> BOOST_SERIALIZATION_NVP(T1copy));
CHECK(T1 == T1copy);
}
std::remove(archive_fname);
}
#endif // BTAS_HAS_BOOST_SERIALIZATION
}
|