1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
|
# From Electrum
import ecdsa
from ecdsa.curves import SECP256k1
from ecdsa.ellipticcurve import Point
from ecdsa.util import string_to_number, number_to_string
class MyVerifyingKey(ecdsa.VerifyingKey):
@classmethod
def from_signature(klass, sig, recid, h, curve):
""" See http://www.secg.org/download/aid-780/sec1-v2.pdf, chapter 4.1.6 """
from ecdsa import util, numbertheory
import msqr
curveFp = curve.curve
G = curve.generator
order = G.order()
# extract r,s from signature
r, s = util.sigdecode_string(sig, order)
# 1.1
x = r + (recid/2) * order
# 1.3
alpha = ( x * x * x + curveFp.a() * x + curveFp.b() ) % curveFp.p()
beta = msqr.modular_sqrt(alpha, curveFp.p())
y = beta if (beta - recid) % 2 == 0 else curveFp.p() - beta
# 1.4 the constructor checks that nR is at infinity
R = Point(curveFp, x, y, order)
# 1.5 compute e from message:
e = string_to_number(h)
minus_e = -e % order
# 1.6 compute Q = r^-1 (sR - eG)
inv_r = numbertheory.inverse_mod(r,order)
Q = inv_r * ( s * R + minus_e * G )
return klass.from_public_point( Q, curve )
def point_to_ser(P):
return ( '04'+('%064x'%P.x())+('%064x'%P.y()) ).decode('hex')
def recoverKey(signature, hashValue, keyX):
rLength = signature[3]
r = signature[4 : 4 + rLength]
sLength = signature[4 + rLength + 1]
s = signature[4 + rLength + 2:]
if rLength == 33:
r = r[1:]
if sLength == 33:
s = s[1:]
r = str(r)
s = str(s)
for i in range(4):
try:
key = MyVerifyingKey.from_signature(r + s, i, hashValue, curve = SECP256k1)
candidate = point_to_ser(key.pubkey.point)
if candidate[1:33] == keyX:
return candidate
except Exception:
pass
raise Exception("Key recovery failed")
|