File: extent_io.c

package info (click to toggle)
btrfs-progs 6.16-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 20,504 kB
  • sloc: ansic: 126,181; sh: 7,642; python: 1,386; makefile: 900; asm: 296
file content (682 lines) | stat: -rw-r--r-- 17,684 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include "kerncompat.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <errno.h>
#include "kernel-lib/list.h"
#include "kernel-lib/raid56.h"
#include "kernel-lib/bitmap.h"
#include "kernel-shared/accessors.h"
#include "kernel-shared/extent-io-tree.h"
#include "kernel-shared/extent_io.h"
#include "kernel-shared/ctree.h"
#include "kernel-shared/volumes.h"
#include "kernel-shared/disk-io.h"
#include "kernel-shared/messages.h"
#include "kernel-shared/uapi/btrfs.h"
#include "kernel-shared/uapi/btrfs_tree.h"
#include "common/messages.h"
#include "common/utils.h"
#include "common/device-utils.h"
#include "common/internal.h"

static void free_extent_buffer_final(struct extent_buffer *eb);

void extent_buffer_init_cache(struct btrfs_fs_info *fs_info)
{
	fs_info->max_cache_size = total_memory() / 4;
	fs_info->cache_size = 0;
	INIT_LIST_HEAD(&fs_info->lru);
}

void extent_buffer_free_cache(struct btrfs_fs_info *fs_info)
{
	struct extent_buffer *eb;

	while(!list_empty(&fs_info->lru)) {
		eb = list_entry(fs_info->lru.next, struct extent_buffer, lru);
		if (eb->refs) {
			/*
			 * Reset extent buffer refs to 1, so the
			 * free_extent_buffer_nocache() can free it for sure.
			 */
			eb->refs = 1;
			fprintf(stderr,
				"extent buffer leak: start %llu len %u\n",
				(unsigned long long)eb->start, eb->len);
			free_extent_buffer_nocache(eb);
		} else {
			free_extent_buffer_final(eb);
		}
	}

	free_extent_cache_tree(&fs_info->extent_cache);
	fs_info->cache_size = 0;
}

/*
 * extent_buffer_bitmap_set - set an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to set
 */
void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
                              unsigned long pos, unsigned long len)
{
	u8 *p = (u8 *)eb->data + start + BIT_BYTE(pos);
	const unsigned int size = pos + len;
	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);

	while (len >= bits_to_set) {
		*p |= mask_to_set;
		len -= bits_to_set;
		bits_to_set = BITS_PER_BYTE;
		mask_to_set = ~0;
		p++;
	}
	if (len) {
		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
		*p |= mask_to_set;
	}
}

/*
 * extent_buffer_bitmap_clear - clear an area of a bitmap
 * @eb: the extent buffer
 * @start: offset of the bitmap item in the extent buffer
 * @pos: bit number of the first bit
 * @len: number of bits to clear
 */
void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
                                unsigned long pos, unsigned long len)
{
	u8 *p = (u8 *)eb->data + start + BIT_BYTE(pos);
	const unsigned int size = pos + len;
	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);

	while (len >= bits_to_clear) {
		*p &= ~mask_to_clear;
		len -= bits_to_clear;
		bits_to_clear = BITS_PER_BYTE;
		mask_to_clear = ~0;
		p++;
	}
	if (len) {
		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
		*p &= ~mask_to_clear;
	}
}

static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *info,
						   u64 bytenr, u32 blocksize)
{
	struct extent_buffer *eb;

	eb = calloc(1, sizeof(struct extent_buffer) + blocksize);
	if (!eb)
		return NULL;

	eb->start = bytenr;
	eb->len = blocksize;
	eb->refs = 1;
	eb->flags = 0;
	eb->cache_node.start = bytenr;
	eb->cache_node.size = blocksize;
	eb->fs_info = info;
	INIT_LIST_HEAD(&eb->recow);
	INIT_LIST_HEAD(&eb->lru);
	memset_extent_buffer(eb, 0, 0, blocksize);

	return eb;
}

struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
{
	struct extent_buffer *new;

	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
	if (!new)
		return NULL;

	copy_extent_buffer_full(new, src);
	new->flags |= EXTENT_BUFFER_DUMMY;

	return new;
}

static void free_extent_buffer_final(struct extent_buffer *eb)
{
	BUG_ON(eb->refs);
	list_del_init(&eb->lru);
	if (!(eb->flags & EXTENT_BUFFER_DUMMY)) {
		remove_cache_extent(&eb->fs_info->extent_cache, &eb->cache_node);
		BUG_ON(eb->fs_info->cache_size < eb->len);
		eb->fs_info->cache_size -= eb->len;
	}
	kfree(eb);
}

static void free_extent_buffer_internal(struct extent_buffer *eb, bool free_now)
{
	if (!eb || IS_ERR(eb))
		return;

	eb->refs--;
	BUG_ON(eb->refs < 0);
	if (eb->refs == 0) {
		if (eb->flags & EXTENT_BUFFER_DIRTY) {
			warning(
			"dirty eb leak (aborted trans): start %llu len %u",
				eb->start, eb->len);
		}
		list_del_init(&eb->recow);
		if (eb->flags & EXTENT_BUFFER_DUMMY || free_now)
			free_extent_buffer_final(eb);
	}
}

void free_extent_buffer(struct extent_buffer *eb)
{
	free_extent_buffer_internal(eb, 0);
}

void free_extent_buffer_nocache(struct extent_buffer *eb)
{
	free_extent_buffer_internal(eb, 1);
}

void free_extent_buffer_stale(struct extent_buffer *eb)
{
	free_extent_buffer_internal(eb, 1);
}

struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
					 u64 bytenr)
{
	struct extent_buffer *eb = NULL;
	struct cache_extent *cache;

	cache = lookup_cache_extent(&fs_info->extent_cache, bytenr,
				    fs_info->nodesize);
	if (cache && cache->start == bytenr &&
	    cache->size == fs_info->nodesize) {
		eb = container_of(cache, struct extent_buffer, cache_node);
		list_move_tail(&eb->lru, &fs_info->lru);
		eb->refs++;
	}
	return eb;
}

struct extent_buffer *find_first_extent_buffer(struct btrfs_fs_info *fs_info,
					       u64 start)
{
	struct extent_buffer *eb = NULL;
	struct cache_extent *cache;

	cache = search_cache_extent(&fs_info->extent_cache, start);
	if (cache) {
		eb = container_of(cache, struct extent_buffer, cache_node);
		list_move_tail(&eb->lru, &fs_info->lru);
		eb->refs++;
	}
	return eb;
}

static void trim_extent_buffer_cache(struct btrfs_fs_info *fs_info)
{
	struct extent_buffer *eb, *tmp;

	list_for_each_entry_safe(eb, tmp, &fs_info->lru, lru) {
		if (eb->refs == 0)
			free_extent_buffer_final(eb);
		if (fs_info->cache_size <= ((fs_info->max_cache_size * 9) / 10))
			break;
	}
}

struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
					  u64 bytenr, u32 blocksize)
{
	struct extent_buffer *eb;
	struct cache_extent *cache;

	cache = lookup_cache_extent(&fs_info->extent_cache, bytenr, blocksize);
	if (cache && cache->start == bytenr &&
	    cache->size == blocksize) {
		eb = container_of(cache, struct extent_buffer, cache_node);
		list_move_tail(&eb->lru, &fs_info->lru);
		eb->refs++;
	} else {
		int ret;

		if (cache) {
			eb = container_of(cache, struct extent_buffer,
					  cache_node);
			free_extent_buffer(eb);
		}
		eb = __alloc_extent_buffer(fs_info, bytenr, blocksize);
		if (!eb)
			return NULL;
		ret = insert_cache_extent(&fs_info->extent_cache, &eb->cache_node);
		if (ret) {
			kfree(eb);
			return NULL;
		}
		list_add_tail(&eb->lru, &fs_info->lru);
		fs_info->cache_size += blocksize;
		if (fs_info->cache_size >= fs_info->max_cache_size)
			trim_extent_buffer_cache(fs_info);
	}
	return eb;
}

/*
 * Allocate a dummy extent buffer which won't be inserted into extent buffer
 * cache.
 *
 * This mostly allows super block read write using existing eb infrastructure
 * without pulluting the eb cache.
 *
 * This is especially important to avoid injecting eb->start == SZ_64K, as
 * fuzzed image could have invalid tree bytenr covers super block range,
 * and cause ref count underflow.
 */
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
						u64 bytenr, u32 blocksize)
{
	struct extent_buffer *ret;

	ret = __alloc_extent_buffer(fs_info, bytenr, blocksize);
	if (!ret)
		return NULL;

	ret->flags |= EXTENT_BUFFER_DUMMY;

	return ret;
}

static int read_raid56(struct btrfs_fs_info *fs_info, void *buf, u64 logical,
		       u64 len, int mirror, struct btrfs_multi_bio *multi,
		       u64 *raid_map)
{
	const int tolerance = (multi->type & BTRFS_RAID_RAID6 ? 2 : 1);
	const int num_stripes = multi->num_stripes;
	const u64 full_stripe_start = raid_map[0];
	void **pointers = NULL;
	unsigned long *failed_stripe_bitmap = NULL;
	int failed_a = -1;
	int failed_b = -1;
	int i;
	int ret;

	/* Only read repair should go this path */
	ASSERT(mirror > 1);
	ASSERT(raid_map);

	/* The read length should be inside one stripe */
	ASSERT(len <= BTRFS_STRIPE_LEN);

	pointers = calloc(num_stripes, sizeof(void *));
	if (!pointers)
		return -ENOMEM;

	/* Allocate memory for the full stripe */
	for (i = 0; i < num_stripes; i++) {
		pointers[i] = kmalloc(BTRFS_STRIPE_LEN, GFP_KERNEL);
		if (!pointers[i]) {
			ret = -ENOMEM;
			goto out;
		}
	}

	failed_stripe_bitmap = bitmap_zalloc(num_stripes);
	if (!failed_stripe_bitmap) {
		ret = -ENOMEM;
		goto out;
	}

	/*
	 * Read the full stripe.
	 *
	 * The stripes in @multi is not rotated, thus can be used to read from
	 * disk directly.
	 */
	for (i = 0; i < num_stripes; i++) {
		ret = btrfs_pread(multi->stripes[i].dev->fd, pointers[i],
				  BTRFS_STRIPE_LEN, multi->stripes[i].physical,
				  fs_info->zoned);
		if (ret < BTRFS_STRIPE_LEN)
			set_bit(i, failed_stripe_bitmap);
	}

	/*
	 * Get the failed index.
	 *
	 * Since we're reading using mirror_num > 1 already, it means the data
	 * stripe where @logical lies in is definitely corrupted.
	 */
	set_bit((logical - full_stripe_start) / BTRFS_STRIPE_LEN, failed_stripe_bitmap);

	/*
	 * For RAID6, we don't have good way to exhaust all the combinations,
	 * so here we can only go through the map to see if we have missing devices.
	 *
	 * If we only have one failed stripe (marked by above set_bit()), then
	 * we have no better idea, fallback to use P corruption.
	 */
	if (multi->type & BTRFS_BLOCK_GROUP_RAID6 &&
	    bitmap_weight(failed_stripe_bitmap, num_stripes) < 2)
		set_bit(num_stripes - 2, failed_stripe_bitmap);

	/* Damaged beyond repair already. */
	if (bitmap_weight(failed_stripe_bitmap, num_stripes) > tolerance) {
		ret = -EIO;
		goto out;
	}

	for_each_set_bit(i, failed_stripe_bitmap, num_stripes) {
		if (failed_a < 0)
			failed_a = i;
		else if (failed_b < 0)
			failed_b = i;
	}

	/* Rebuild the full stripe */
	ret = raid56_recov(num_stripes, BTRFS_STRIPE_LEN, multi->type,
			   failed_a, failed_b, pointers);
	ASSERT(ret == 0);

	/* Now copy the data back to original buf */
	memcpy(buf, pointers[failed_a] + (logical - full_stripe_start) %
			BTRFS_STRIPE_LEN, len);
	ret = 0;
out:
	kfree(failed_stripe_bitmap);
	for (i = 0; i < num_stripes; i++)
		kfree(pointers[i]);
	kfree(pointers);
	return ret;
}

int read_data_from_disk(struct btrfs_fs_info *info, void *buf, u64 logical,
			u64 *len, int mirror)
{
	struct btrfs_multi_bio *multi = NULL;
	struct btrfs_device *device;
	u64 read_len = *len;
	u64 *raid_map = NULL;
	int ret;

	ret = btrfs_map_block(info, READ, logical, &read_len, &multi, mirror,
			      &raid_map);
	if (ret) {
		fprintf(stderr, "Couldn't map the block %llu\n", logical);
		return -EIO;
	}
	read_len = min(*len, read_len);

	/* We need to rebuild from P/Q */
	if (mirror > 1 && multi->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
		ret = read_raid56(info, buf, logical, read_len, mirror, multi,
				  raid_map);
		kfree(multi);
		kfree(raid_map);
		*len = read_len;
		return ret;
	}
	kfree(raid_map);
	device = multi->stripes[0].dev;

	if (device->fd <= 0) {
		kfree(multi);
		return -EIO;
	}

	ret = btrfs_pread(device->fd, buf, read_len,
			  multi->stripes[0].physical, info->zoned);
	kfree(multi);
	if (ret < 0) {
		fprintf(stderr, "Error reading %llu, %d\n", logical,
			ret);
		return ret;
	}
	if (ret != read_len) {
		fprintf(stderr,
			"Short read for %llu, read %d, read_len %llu\n",
			logical, ret, read_len);
		return -EIO;
	}
	*len = read_len;

	return 0;
}

/*
 * Write the data in @buf to logical bytenr @offset.
 *
 * Such data will be written to all mirrors and RAID56 P/Q will also be
 * properly handled.
 */
int write_data_to_disk(struct btrfs_fs_info *info, const void *buf, u64 offset,
		       u64 bytes)
{
	struct btrfs_multi_bio *multi = NULL;
	struct btrfs_device *device;
	u64 bytes_left = bytes;
	u64 this_len;
	u64 total_write = 0;
	u64 *raid_map = NULL;
	u64 dev_bytenr;
	int dev_nr;
	int ret = 0;

	while (bytes_left > 0) {
		this_len = bytes_left;
		dev_nr = 0;

		ret = btrfs_map_block(info, WRITE, offset, &this_len, &multi,
				      0, &raid_map);
		if (ret) {
			fprintf(stderr, "Couldn't map the block %llu\n",
				offset);
			return -EIO;
		}

		if (raid_map) {
			struct extent_buffer *eb;
			u64 stripe_len = this_len;

			this_len = min(this_len, bytes_left);
			this_len = min(this_len, (u64)info->nodesize);

			eb = kmalloc(sizeof(struct extent_buffer) + this_len, GFP_KERNEL);
			if (!eb) {
				error_msg(ERROR_MSG_MEMORY, "extent buffer");
				ret = -ENOMEM;
				goto out;
			}

			memset(eb, 0, sizeof(struct extent_buffer) + this_len);
			eb->start = offset;
			eb->len = this_len;

			memcpy(eb->data, buf + total_write, this_len);
			ret = write_raid56_with_parity(info, eb, multi,
						       stripe_len, raid_map);
			BUG_ON(ret < 0);

			kfree(eb);
			kfree(raid_map);
			raid_map = NULL;
		} else while (dev_nr < multi->num_stripes) {
			device = multi->stripes[dev_nr].dev;
			if (device->fd <= 0) {
				kfree(multi);
				return -EIO;
			}

			dev_bytenr = multi->stripes[dev_nr].physical;
			this_len = min(this_len, bytes_left);
			dev_nr++;
			device->total_ios++;

			ret = btrfs_pwrite(device->fd, buf + total_write,
					   this_len, dev_bytenr, info->zoned);
			if (ret != this_len) {
				if (ret < 0) {
					fprintf(stderr, "Error writing to "
						"device %d\n", errno);
					ret = -errno;
					kfree(multi);
					return ret;
				} else {
					fprintf(stderr, "Short write\n");
					kfree(multi);
					return -EIO;
				}
			}
		}

		BUG_ON(bytes_left < this_len);

		bytes_left -= this_len;
		offset += this_len;
		total_write += this_len;

		kfree(multi);
		multi = NULL;
	}
	return 0;

out:
	kfree(raid_map);
	return ret;
}

int set_extent_buffer_dirty(struct extent_buffer *eb)
{
	struct extent_io_tree *tree = &eb->fs_info->dirty_buffers;
	if (!(eb->flags & EXTENT_BUFFER_DIRTY)) {
		eb->flags |= EXTENT_BUFFER_DIRTY;
		set_extent_dirty(tree, eb->start, eb->start + eb->len - 1,
				 GFP_NOFS);
		extent_buffer_get(eb);
	}
	return 0;
}

int btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
			     struct extent_buffer *eb)
{
	struct extent_io_tree *tree = &eb->fs_info->dirty_buffers;
	if (eb->flags & EXTENT_BUFFER_DIRTY) {
		eb->flags &= ~EXTENT_BUFFER_DIRTY;
		clear_extent_dirty(tree, eb->start, eb->start + eb->len - 1,
				   NULL);
		free_extent_buffer(eb);
	}
	return 0;
}

int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
			 unsigned long start, unsigned long len)
{
	return memcmp(eb->data + start, ptrv, len);
}

void read_extent_buffer(const struct extent_buffer *eb, void *dst,
			unsigned long start, unsigned long len)
{
	memcpy(dst, eb->data + start, len);
}

void write_extent_buffer_fsid(struct extent_buffer *eb, const void *src)
{
	write_extent_buffer(eb, src, btrfs_header_fsid(), BTRFS_FSID_SIZE);
}

void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
		const void *src)
{
	write_extent_buffer(eb, src, btrfs_header_chunk_tree_uuid(eb), BTRFS_FSID_SIZE);
}

void write_extent_buffer(struct extent_buffer *eb, const void *src,
			 unsigned long start, unsigned long len)
{
	memcpy((void *)eb->data + start, src, len);
}

void copy_extent_buffer_full(struct extent_buffer *dst,
			     const struct extent_buffer *src)
{
	copy_extent_buffer(dst, src, 0, 0, src->len);
}

void copy_extent_buffer(struct extent_buffer *dst,
			const struct extent_buffer *src,
			unsigned long dst_offset, unsigned long src_offset,
			unsigned long len)
{
	memcpy((void *)dst->data + dst_offset, src->data + src_offset, len);
}

void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
			  unsigned long src_offset, unsigned long len)
{
	memcpy((void *)dst->data + dst_offset, dst->data + src_offset, len);
}

void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
			   unsigned long src_offset, unsigned long len)
{
	memmove((void *)dst->data + dst_offset, dst->data + src_offset, len);
}

void memset_extent_buffer(struct extent_buffer *eb, char c,
			  unsigned long start, unsigned long len)
{
	memset((void *)eb->data + start, c, len);
}

int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
			   unsigned long nr)
{
	return le_test_bit(nr, (u8 *)eb->data + start);
}

/*
 * btrfs_readahead_node_child - readahead a node's child block
 * @node:	parent node we're reading from
 * @slot:	slot in the parent node for the child we want to read
 *
 * A helper for readahead_tree_block, we simply read the bytenr pointed at the
 * slot in the node provided.
 */
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
{
	readahead_tree_block(node->fs_info, btrfs_node_blockptr(node, slot),
			     btrfs_node_ptr_generation(node, slot));
}