1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
/* ************************************************************************* *
bugsx - (C) Copyright 1990-1997 Joshua R. Smith (jrs@media.mit.edu)
http://physics.www.media.mit.edu/~jrs
(C) Copyright 1995-1997 Robert Gasch (Robert_Gasch@peoplesoft.com)
http://www.peoplesoft.com/peoplepages/g/robert_gasch/index.htm
Permission to use, copy, modify and distribute this software for any
purpose and without fee is hereby granted, provided that this copyright
notice appear in all copies as well as supporting documentation. All
work developed as a consequence of the use of this program should duly
acknowledge such use.
No representations are made about the suitability of this software for
any purpose. This software is provided "as is" without express or implied
warranty.
See the GNU General Public Licence for more information.
* ************************************************************************* */
/***************************************************************************
* BUGS software
* Copyright 1990 Joshua R. Smith
* file: breed.c 5/10/90
*
* This is a simple interactive genetic design system. You can grow
* creatures (graphs of Fourier Series, at this point) on the screen and
* specify which are fit enough to reproduce by clicking. When you've
* choosen the ones you want to reproduce, click breed. Breeder varies
* their genetic material and displays a new generation for you to
* inspect. As of now, breeder uses only the three most basic variation
* mechanisms: reproduction, crossover, and mutation. Reproduction
* means that only the fit will affect the next generation. Those which
* are not fit do not reproduce and therefore do not affect the next
* generation. In crossover, pairs of parents from the breeding (ie fit)
* subpopulation are choosen. We then choose a random chromosome locus
* (a locus is an index into the array holding the genes, ie an index
* into the chromosome), snip both Chromosomes at that point, and cross
* the strands; that is, we glue the first piece from the first parent
* onto the second piece from the second parent and the first piece
* from the second parent onto the second piece from the first parent.
* Got it? Or wait... Did I get that backwards? No. Just Kidding.
* During crossover, mutation can also occur. If an allele (chromosome
* array element value) is to be mutated, we just add some noise-- a
* gaussian random variable with a specified STD.
*
* Crossover and mutation do not happen every time. There are variables
* specifying the probabilities of these events. Right now, these and
* many other useful parameters are in the file Curves.h. To experiment
* with them, modify the values set in Curves.h and make to recompile.
* Only breed.c should need to be recompiled.
* (At some point in the near future, useful parameters will appear in
* the control panel so you'll be able to tinker with them without
* recompiling. At a later date, all or some parameters may be specified
* BY THE GENETIC MATERIAL ITSELF! Then things will really get
* interesting. If some variation mechanism is counter-productive in a
* particular application, the probability of that variation should
* diminish and perhaps vanish. Further down the road, hopefully the
* genes will code (some of) the variation mecahisms. Then new ones will
* be able to develop as required by the problem, the changing search
* space or the environment--whatever you want to call it.
*
*
* This file is where the action is. The main routine, which sets up the
* interactive system and then lets it go, is in this file. Also, all the
* genetic operators are implemented here. Once again, parameters to
* tweak are in Curves.h. The embryological stuff (routine to graph
* polynomials) is in the file Grow.c.
*
* To run, type 'b' (the letter b). This is a command script which
* executes 'breed' (compiled program) and passes it the time
* as a seed for the random number generator. Hint: if you want
* everything to go faster, shrink the population window. The smaller
* it is, the faster everything goes.
*
* Acknowledgements: the code for the user interface was largely
* appropriated from GED, written by Mike McDougall, Rob Allen, me, and
* others at Williams College. The Gaussian noise generator was written
* by Donald House and translated by Rob Allen. And of course the idea
* for the program was inspired by Richard Dawkins' Blind Watchmaker.
* This program was originally written as a project in Donald House's AI
* course. Thanks to Duane Bailey and Don House for supervision and
* funding over the summer of 1990.
*
***************************************************************************/
#include "bugsx.h"
extern Display *mydisplay;
extern WinType main_win, /* main window */
menu[], /* menu items */
draw_win[]; /* windows we draw in */
extern unsigned long fg, bg; /* foreground, background */
extern Population G_Population[]; /* Array of Organisms */
extern Population G_Kids_Pop[]; /* Next generation */
extern double G_fit_thresh, /* fitness threshold */
G_pCross, /* probability of crossover */
G_pMutation, /* probability of mutation */
G_mutation_std, /* gauss fn STD used to mutate*/
G_weight[], /* weight for each term */
G_sum_weights; /* Sum of weights -- yscaling */
extern int G_size_pop, /* # organisms in population */
G_size_breeding_pop, /* # organisms reproducing */
G_generation, /* # generations so far */
G_switch_default, /* switches start on or off */
G_show_genes, /* display gene window */
G_current_width, /* Current size of pixwin */
G_current_height,
G_org_height, /* Size in pixels of organism */
G_org_width,
G_x_scale, /* These are used for scaling */
G_y_scale, /* curves. */
G_x_trans,
G_y_trans,
selected[],
extend_print,
verbose;
extern long seed;
/* ************************************************************************ */
/* ************************ initialize the system *********************** */
/* ************************************************************************ */
void init ()
{
G_size_pop = INIT_POP;
G_fit_thresh = INIT_FIT_THRESH;
G_switch_default= INIT_SWITCH_DEF;
G_show_genes = INIT_SHOW_GENES;
G_pCross = pCROSS;
G_pMutation = pMUTATION;
G_mutation_std = MUTATION_STD;
G_generation = 0;
seed = time (NULL);
}
/* ************************************************************************ */
/* ****** set organism's genes to random values between -.5 and +.5 ******* */
/* *** 6/4/90, changed max and min gene values from -.5,.+5 to -1.0,+1.0 ** */
/* ************************************************************************ */
void randomize_org (org, name, size_chrom)
Organism *org;
int name, size_chrom;
{
int i;
org->name = name;
org->size_chrom = size_chrom;
for (i=0; i<size_chrom; i++)
{
org->X_Chrom[i] = (2.0*drand48())-1.0;
org->Y_Chrom[i] = (2.0*drand48())-1.0;
G_weight[i] = dpow (WEIGHT_BASE, i);
G_sum_weights += G_weight[i];
}
org->fitness = 0.0;
org->mom = 0;
org->dad = 0;
G_sum_weights = 0.0;
}
/* ************************************************************************ */
/* *********************** initialize the population ********************* */
/* ************************************************************************ */
void randomize_pop()
{
int i;
for (i=0; i<G_size_pop; i++)
if (!selected[i])
randomize_org (&G_Population[i], i, INIT_CHROM);
}
/* ************************************************************************ */
/* * get a uniformly distributed random # between low && high (inclusive) * */
/* ************************************************************************ */
int rnd (low, high)
int low, high;
{
double alpha;
int beta;
alpha = drand48(); /* alpha is a uniform rand dist var on [0.0, 1.0) */
beta = (int) (low + ((high-low+1)*alpha));
return (beta+low);
}
/* ************************************************************************ */
/* *********** get a boolean value with specified probability ************* */
/* ************************************************************************ */
int flip (p)
double p;
{
int result;
if (p == 1.0)
result = 1;
else
{
if (drand48() <= p)
result = 1;
else
result = 0;
}
return(result);
}
/* ************************************************************************ */
/* ********** copy genetic material from one organism to another ********** */
/* ************************************************************************ */
void copy_org (org1, org2)
Organism *org1, *org2;
{
int i;
org2->name = org1->name;
org2->size_chrom = org1->size_chrom;
for (i=0; i<org1->size_chrom; i++)
{
org2->X_Chrom[i] = org1->X_Chrom[i];
org2->Y_Chrom[i] = org1->Y_Chrom[i];
}
org2->mom = org1->mom;
org2->dad = org1->dad;
}
/* ************************************************************************ */
/* ************************ copy entire population ************************ */
/* ************************************************************************ */
void copy_pop(pop1, pop2, size_pop)
Population *pop1, *pop2;
int size_pop;
{
int i;
for (i=0; i<size_pop; i++)
copy_org (&pop1[i], &pop2[i]);
}
/* ************************************************************************ */
/* *************************** erase an organism ************************** */
/* ************************************************************************ */
void erase_org (org)
Organism *org;
{
int i;
for (i=0; i<org->size_chrom; i++)
{
org->X_Chrom[i] = 0.0;
org->Y_Chrom[i] = 0.0;
org->size_chrom = 0;
org->fitness = 0.0;
}
}
/* ************************************************************************ */
/* ***************** pick out a single eligible individual **************** */
/* ************************************************************************ */
int select_org (size_pop)
int size_pop;
{
return (rnd(0,size_pop-1));
}
/* ************************************************************************ */
/* ******************************** mutate ******************************** */
/* ************************************************************************ */
double mutation(allele)
double allele;
{
if (flip(G_pMutation)==1)
allele = noise(allele, G_mutation_std);
return(allele);
}
/* ************************************************************************ */
/* ************************** crossover == sex **************************** */
/* ************************************************************************ */
/* * Note: if we removed possibility of combining chromosomes of different* */
/* ** lengths and it were still possible for chrom length to change then ** */
/* ************************ we'd have... speciation! ********************* */
/* * Should try to have GENES specify how genetic material is recombined.* */
/* ************************************************************************ */
/* ************************************************************************ */
/* ************************************************************************ */
/* This is how Crossover works: choose a crossover point, i_cross.
* p1 = p1a.p1b p2 = p2a.p2b.
*
* Then the children c1 and c2, are:
* c1 = p1a.p2b c2 = p2a.p1b
* ************************************************************************ */
void crossover (parent1, parent2, child1, child2, first_born_name)
Organism *parent1, *parent2, *child1, *child2;
int first_born_name;
{
int i, i_cross, short_chrom, long_chrom;
if (extend_print)
{
printf("Mom: \n");
print_org(parent1);
printf("Dad: \n");
print_org(parent2);
}
child1->name = first_born_name;
child2->name = first_born_name+1;
/* *** use size of smaller chromosome as max crossover locus *** */
if (parent1->size_chrom > parent2->size_chrom)
{
long_chrom = parent1->size_chrom;
short_chrom = parent2->size_chrom;
}
else
{
long_chrom = parent2->size_chrom;
short_chrom = parent1->size_chrom;
}
/* *** Now we vary X and Y Chroms completely seperately. *** */
/* *** They don't cross over at the same points or at the *** */
/* *** same points or at the same times. Also, we don't *** */
/* *** use any inter chromosomal variation operators like *** */
/* *** segregation and translocation. *** */
/* *** X_CHROM *** */
/* *** Crossover occurs with p(G_pCross) *** */
if (flip(G_pCross)==1)
/* *** pick crossover locus *** */
i_cross = rnd(0,short_chrom-1);
else
/* *** INCORRECT if diff Chrom sizes *** */
i_cross = short_chrom;
/* *** Copy first part of Chroms directly to children *** */
for (i=0; i<i_cross; i++)
{
child1->X_Chrom[i] = mutation(parent1->X_Chrom[i]);
child2->X_Chrom[i] = mutation(parent2->X_Chrom[i]);
}
/* *** parent2 to child 1 (a cross) *** */
for (i=i_cross; i<short_chrom; i++)
child1->X_Chrom[i] = mutation(parent2->X_Chrom[i]);
/* *** parent1 to child 2 (a cross) *** */
for (i=i_cross; i<long_chrom; i++)
child2->X_Chrom[i] = mutation(parent1->X_Chrom[i]);
/* *** Y_CHROM *** */
/* *** Crossover occurs with p(G_pCross) *** */
if (flip(G_pCross)==1)
/* *** pick crossover locus *** */
i_cross = rnd(0,short_chrom-1);
else
/* *** INCORRECT if diff Chrom sizes *** */
i_cross = short_chrom;
/* *** Copy first part of Chroms directly to children *** */
for (i=0; i<i_cross; i++)
{
child1->Y_Chrom[i] = mutation(parent1->Y_Chrom[i]);
child2->Y_Chrom[i] = mutation(parent2->Y_Chrom[i]);
}
/* *** parent2 to child 1 (a cross) *** */
for (i=i_cross; i<short_chrom; i++)
child1->Y_Chrom[i] = mutation(parent2->Y_Chrom[i]);
/* *** parent1 to child 2 (a cross) *** */
for (i=i_cross; i<long_chrom; i++)
child2->Y_Chrom[i] = mutation(parent1->Y_Chrom[i]);
child1->size_chrom = parent2->size_chrom;
child2->size_chrom = parent1->size_chrom;
child1->fitness = 0.0;
child2->fitness = 0.0;
child1->mom = parent1->name;
child2->mom = parent1->name;
child1->dad = parent2->name;
child2->dad = parent2->name;
if (extend_print)
{
printf("Fred: \n");
print_org(child1);
printf("Jane: \n");
print_org(child2);
}
}
/* ************************************************************************ */
/* ************************** mix up the genes **************************** */
/* ************************************************************************ */
void breed()
{
int i, size_eligible_pop, Mom, Dad;
/* *** Isolate the breeding subpopulation *** */
size_eligible_pop = 0;
for (i=0; i<G_size_pop; i++)
{
/* *** Set fitness values *** */
G_Population[i].fitness = fitness(i);
if (fitness(i))
size_eligible_pop++;
set_toggle_to_default(i);
}
if (size_eligible_pop<2)
size_eligible_pop = G_size_pop;
else
{
size_eligible_pop = 0;
for (i=0; i<G_size_pop; i++)
{
if (G_Population[i].fitness > G_fit_thresh)
{
if (extend_print)
{
printf("Copying %d to %d \n",
i, size_eligible_pop);
printf("original %d: \n", i);
print_org(&G_Population[i]);
printf("\n");
printf("original %d: \n", size_eligible_pop);
print_org(&G_Population[size_eligible_pop]);
printf("\n");
}
/* *** This is a tiny optimization *** */
/* *** don't copy to same place *** */
if (i != size_eligible_pop)
copy_org(&G_Population[i],
&G_Population[size_eligible_pop]);
if (extend_print)
{
printf("%d after copy: \n", size_eligible_pop);
print_org(&G_Population[size_eligible_pop]);
printf("\n");
}
/* *** Increment once per FIT organism *** */
size_eligible_pop++;
}
G_Population[i].fitness = 0.0;
}
}
/* *** Each couple has two kids. Nuclear families! *** */
for (i=0; i<G_size_pop; i+=2)
{
Dad = select_org (size_eligible_pop);
do
{
Mom = select_org(size_eligible_pop);
}
while (Mom == Dad);
crossover(&G_Population[Mom], &G_Population[Dad],
&G_Kids_Pop[i], &G_Kids_Pop[i+1], i);
}
/* *** Now the kids grow up - make new generation the current one *** */
copy_pop(G_Kids_Pop, G_Population, G_size_pop);
/* *** Here we actually put the kids on the screen *** */
grow_pop();
}
/* ************************************************************************ */
/* *** calculate fitness - in this case by checking for selected windows ** */
/* ************************************************************************ */
int fitness(i)
int i;
{
#ifdef DEBUG
if (selected [i])
printf ("%d is fit ...\n", i);
#endif
return (selected [i]);
}
/* ************************************************************************ */
/* ********** set the fitness indicator back to default (FALSE) *********** */
/* ************************************************************************ */
void set_toggle_to_default(i)
int i;
{
if (selected[i])
{
XFillRectangle (mydisplay, draw_win[i].win, draw_win[i].gc,
0, 0, draw_win[i].width, draw_win[i].height);
XSetForeground (mydisplay, draw_win[i].gc, fg);
selected[i]=FALSE;
}
}
/* ************************************************************************ */
/* ******************** print the entire population *********************** */
/* ************************************************************************ */
void print_pop()
{
int i;
for (i=0; i<G_size_pop; i++)
print_org (&G_Population[i]);
printf("\n");
}
/* ************************************************************************ */
/* ************************** print an organism *************************** */
/* ************************************************************************ */
void print_org (org)
Organism* org;
{
int i;
printf("%d of %d and %d:\n",org->name, org->mom, org->dad);
for (i=0; i<org->size_chrom; i++)
{
printf(" (%1.3g, %1.3g)",
org->X_Chrom[i], org->Y_Chrom[i]);
if ((i+1)%4 == 0)
printf ("\n");
}
printf("\t%g", org->fitness);
printf("\n");
}
|