File: array.h

package info (click to toggle)
bullet 2.83.7%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 48,772 kB
  • sloc: cpp: 355,312; lisp: 12,087; ansic: 11,969; python: 644; makefile: 116; xml: 27
file content (284 lines) | stat: -rw-r--r-- 5,811 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
//
//  Typical template dynamic array container class.
//  By S Melax 1998
// 
// anyone is free to use, inspect, learn from, or ignore
// the code here as they see fit.  
//
// A very simple template array class.
// Its easiest to understand this array
// class by seeing how it is used in code.
//
// For example:
//     for(i=0;i<myarray.count;i++) 
//         myarray[i] = somefunction(i);
// 
// When the array runs out of room, it 
// reallocates memory and doubles the size of its
// storage buffer.  The reason for *doubleing* the amount of
// memory is so the order of any algorithm using this class
// is the same as it would be had you used a regular C array.
// The penalty for reallocating and copying 
// For example consider adding n elements to a list.
// Lets sum the number of times elements are "copied".
// The worst case occurs when n=2^k+1 where k is integer.
// In this case we do a big reallocation when we add the last element.  
// n elements are copied once, n/2 elements are copied twice,
// n/4 elements are copied 3 times, and so on ...
//    total == n* (1+1/2 + 1/4 + 1/8 + ...) == n * 2
// So we do n*2 copies.  Therefore adding n 
// elements to an Array is still O(n).
// The memory usage is also of the same order as if a C array was used.
// An Array uses less than double the minimum needed space.  Again, we 
// see that we are within a small constant multiple.
// 
// Why no "realloc" to avoid the copy when reallocating memory?  
// You have a choice to either use malloc/free and friends 
// or to use new/delete.  Its bad mojo to mix these.  new/delete was
// chosen to be C++ish and have the array elements constructors/destructors 
// invoked as expected.
//
//

#ifndef SM_ARRAY_H
#define SM_ARRAY_H

#include <assert.h>
#include <stdio.h>

template <class Type> class Array {
  public:
				Array(int s=0);
				Array(Array<Type> &array);
				~Array();
	void		allocate(int s);
	void		SetSize(int s);
	void		Pack();
	Type&		Add(Type);
	void		AddUnique(Type);
	int 		Contains(Type);
	void		Insert(Type,int);
	int			IndexOf(Type);
	void		Remove(Type);
	void		DelIndex(int i);
	Type&		DelIndexWithLast(int i);
	Type *		element;
	int			count;
	int			array_size;
	const Type	&operator[](int i) const { assert(i>=0 && i<count);  return element[i]; }
	Type		&operator[](int i)  { assert(i>=0 && i<count);  return element[i]; }
	Type		&Pop() { assert(count); count--;  return element[count]; }
	Array<Type> &copy(const Array<Type> &array);
	Array<Type> &operator=(Array<Type> &array);
};


template <class Type> Array<Type>::Array(int s)
{
	if(s==-1) return;
	count=0;
	array_size = 0;
	element = NULL;
	if(s) 
    {
		allocate(s);
	}
}


template <class Type> Array<Type>::Array(Array<Type> &array)
{
	count=0;
	array_size = 0;
	element = NULL;
	*this = array;
}




template <class Type> Array<Type> &Array<Type>::copy(const Array<Type> &array)
{
	assert(array.array_size>=0);
	count=0;
	for(int i=0;i<array.count;i++) 
    {
		Add(array[i]);
	}
	return *this;
}
template <class Type> Array<Type> &Array<Type>::operator=(  Array<Type> &array)
{
	if(array.array_size<0)  //  negative number means steal the data buffer instead of copying
	{
        delete[] element;
		element = array.element;
		array_size = -array.array_size;
		count = array.count;
		array.count =array.array_size = 0;
		array.element = NULL;
		return *this;
	}
	count=0;
	for(int i=0;i<array.count;i++) 
    {
		Add(array[i]);
	}
	return *this;
}

template <class Type> Array<Type>::~Array()
{
    if (element != NULL && array_size!=0)
    {
        delete[] element;
    }
	count=0;array_size=0;element=NULL;
}

template <class Type> void Array<Type>::allocate(int s)
{
	assert(s>0);
	assert(s>=count);
	if(s==array_size) return;
	Type *old = element;
	array_size =s;
	element = new Type[array_size];
	assert(element);
	for(int i=0;i<count;i++)
    {
		element[i]=old[i];
	}
	if(old) delete[] old;
}

template <class Type> void Array<Type>::SetSize(int s)
{
	if(s==0) 
    { 
        if(element) 
        {
            delete[] element;
            element = NULL;
        }
		array_size = s;
    }
	else 
    {	
        allocate(s); 
    }
	count=s;
}

template <class Type> void Array<Type>::Pack()
{
	allocate(count);
}

template <class Type> Type& Array<Type>::Add(Type t)
{
	assert(count<=array_size);
	if(count==array_size) 
    {
		allocate((array_size)?array_size *2:16);
	}
	//int i;
	//for(i=0;i<count;i++) {
		// dissallow duplicates
	//	assert(element[i] != t);
	//}
	element[count++] = t;
	return element[count-1];
}

template <class Type> int Array<Type>::Contains(Type t)
{
	int i;
	int found=0;
	for(i=0;i<count;i++) 
    {
		if(element[i] == t) found++;
	}
	return found;
}

template <class Type> void Array<Type>::AddUnique(Type t)
{
	if(!Contains(t)) Add(t);
}


template <class Type> void Array<Type>::DelIndex(int i)
{
	assert(i<count);
	count--;
	while(i<count)
    {
		element[i] = element[i+1];
		i++;
	}
}

template <class Type> Type& Array<Type>::DelIndexWithLast(int i)
{
	assert(i<count);
	count--;
	if(i<count)
    {
		Type r=element[i];
		element[i] = element[count];
		element[count]=r;
	}
	return element[count];
}

template <class Type> void Array<Type>::Remove(Type t)
{
	int i;
	for(i=0;i<count;i++) 
    {
		if(element[i] == t) 
        {
			break;
		}
	}
	assert(i<count); // assert object t is in the array.
	DelIndex(i);
	for(i=0;i<count;i++) 
    {
		assert(element[i] != t);
	}
}

template <class Type> void Array<Type>::Insert(Type t,int k)
{
	int i=count;
	Add(t); // to allocate space
	while(i>k) 
    {
		element[i]=element[i-1];
		i--;
	}
	assert(i==k);
	element[k]=t;
}


template <class Type> int Array<Type>::IndexOf(Type t)
{
	int i;
	for(i=0;i<count;i++) 
    {
		if(element[i] == t) 
        {
			return i;
		}
	}
	assert(0);
	return -1;
}




#endif