1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
//
// Typical template dynamic array container class.
// By S Melax 1998
//
// anyone is free to use, inspect, learn from, or ignore
// the code here as they see fit.
//
// A very simple template array class.
// Its easiest to understand this array
// class by seeing how it is used in code.
//
// For example:
// for(i=0;i<myarray.count;i++)
// myarray[i] = somefunction(i);
//
// When the array runs out of room, it
// reallocates memory and doubles the size of its
// storage buffer. The reason for *doubleing* the amount of
// memory is so the order of any algorithm using this class
// is the same as it would be had you used a regular C array.
// The penalty for reallocating and copying
// For example consider adding n elements to a list.
// Lets sum the number of times elements are "copied".
// The worst case occurs when n=2^k+1 where k is integer.
// In this case we do a big reallocation when we add the last element.
// n elements are copied once, n/2 elements are copied twice,
// n/4 elements are copied 3 times, and so on ...
// total == n* (1+1/2 + 1/4 + 1/8 + ...) == n * 2
// So we do n*2 copies. Therefore adding n
// elements to an Array is still O(n).
// The memory usage is also of the same order as if a C array was used.
// An Array uses less than double the minimum needed space. Again, we
// see that we are within a small constant multiple.
//
// Why no "realloc" to avoid the copy when reallocating memory?
// You have a choice to either use malloc/free and friends
// or to use new/delete. Its bad mojo to mix these. new/delete was
// chosen to be C++ish and have the array elements constructors/destructors
// invoked as expected.
//
//
#ifndef SM_ARRAY_H
#define SM_ARRAY_H
#include <assert.h>
#include <stdio.h>
template <class Type> class Array {
public:
Array(int s=0);
Array(Array<Type> &array);
~Array();
void allocate(int s);
void SetSize(int s);
void Pack();
Type& Add(Type);
void AddUnique(Type);
int Contains(Type);
void Insert(Type,int);
int IndexOf(Type);
void Remove(Type);
void DelIndex(int i);
Type& DelIndexWithLast(int i);
Type * element;
int count;
int array_size;
const Type &operator[](int i) const { assert(i>=0 && i<count); return element[i]; }
Type &operator[](int i) { assert(i>=0 && i<count); return element[i]; }
Type &Pop() { assert(count); count--; return element[count]; }
Array<Type> ©(const Array<Type> &array);
Array<Type> &operator=(Array<Type> &array);
};
template <class Type> Array<Type>::Array(int s)
{
if(s==-1) return;
count=0;
array_size = 0;
element = NULL;
if(s)
{
allocate(s);
}
}
template <class Type> Array<Type>::Array(Array<Type> &array)
{
count=0;
array_size = 0;
element = NULL;
*this = array;
}
template <class Type> Array<Type> &Array<Type>::copy(const Array<Type> &array)
{
assert(array.array_size>=0);
count=0;
for(int i=0;i<array.count;i++)
{
Add(array[i]);
}
return *this;
}
template <class Type> Array<Type> &Array<Type>::operator=( Array<Type> &array)
{
if(array.array_size<0) // negative number means steal the data buffer instead of copying
{
delete[] element;
element = array.element;
array_size = -array.array_size;
count = array.count;
array.count =array.array_size = 0;
array.element = NULL;
return *this;
}
count=0;
for(int i=0;i<array.count;i++)
{
Add(array[i]);
}
return *this;
}
template <class Type> Array<Type>::~Array()
{
if (element != NULL && array_size!=0)
{
delete[] element;
}
count=0;array_size=0;element=NULL;
}
template <class Type> void Array<Type>::allocate(int s)
{
assert(s>0);
assert(s>=count);
if(s==array_size) return;
Type *old = element;
array_size =s;
element = new Type[array_size];
assert(element);
for(int i=0;i<count;i++)
{
element[i]=old[i];
}
if(old) delete[] old;
}
template <class Type> void Array<Type>::SetSize(int s)
{
if(s==0)
{
if(element)
{
delete[] element;
element = NULL;
}
array_size = s;
}
else
{
allocate(s);
}
count=s;
}
template <class Type> void Array<Type>::Pack()
{
allocate(count);
}
template <class Type> Type& Array<Type>::Add(Type t)
{
assert(count<=array_size);
if(count==array_size)
{
allocate((array_size)?array_size *2:16);
}
//int i;
//for(i=0;i<count;i++) {
// dissallow duplicates
// assert(element[i] != t);
//}
element[count++] = t;
return element[count-1];
}
template <class Type> int Array<Type>::Contains(Type t)
{
int i;
int found=0;
for(i=0;i<count;i++)
{
if(element[i] == t) found++;
}
return found;
}
template <class Type> void Array<Type>::AddUnique(Type t)
{
if(!Contains(t)) Add(t);
}
template <class Type> void Array<Type>::DelIndex(int i)
{
assert(i<count);
count--;
while(i<count)
{
element[i] = element[i+1];
i++;
}
}
template <class Type> Type& Array<Type>::DelIndexWithLast(int i)
{
assert(i<count);
count--;
if(i<count)
{
Type r=element[i];
element[i] = element[count];
element[count]=r;
}
return element[count];
}
template <class Type> void Array<Type>::Remove(Type t)
{
int i;
for(i=0;i<count;i++)
{
if(element[i] == t)
{
break;
}
}
assert(i<count); // assert object t is in the array.
DelIndex(i);
for(i=0;i<count;i++)
{
assert(element[i] != t);
}
}
template <class Type> void Array<Type>::Insert(Type t,int k)
{
int i=count;
Add(t); // to allocate space
while(i>k)
{
element[i]=element[i-1];
i--;
}
assert(i==k);
element[k]=t;
}
template <class Type> int Array<Type>::IndexOf(Type t)
{
int i;
for(i=0;i<count;i++)
{
if(element[i] == t)
{
return i;
}
}
assert(0);
return -1;
}
#endif
|