1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
//
// Big Vector and Sparse Matrix Classes
//
#include <float.h>
#include "vec3n.h"
float conjgrad_lasterror;
float conjgrad_epsilon = 0.1f;
int conjgrad_loopcount;
int conjgrad_looplimit = 100;
/*EXPORTVAR(conjgrad_lasterror);
EXPORTVAR(conjgrad_epsilon );
EXPORTVAR(conjgrad_loopcount);
EXPORTVAR(conjgrad_looplimit);
*/
int ConjGradient(float3N &X, float3Nx3N &A, float3N &B)
{
// Solves for unknown X in equation AX=B
conjgrad_loopcount=0;
int n=B.count;
float3N q(n),d(n),tmp(n),r(n);
r = B - Mul(tmp,A,X); // just use B if X known to be zero
d = r;
float s = dot(r,r);
float starget = s * squared(conjgrad_epsilon);
while( s>starget && conjgrad_loopcount++ < conjgrad_looplimit)
{
Mul(q,A,d); // q = A*d;
float a = s/dot(d,q);
X = X + d*a;
if(conjgrad_loopcount%50==0)
{
r = B - Mul(tmp,A,X);
}
else
{
r = r - q*a;
}
float s_prev = s;
s = dot(r,r);
d = r+d*(s/s_prev);
}
conjgrad_lasterror = s;
return conjgrad_loopcount<conjgrad_looplimit; // true means we reached desired accuracy in given time - ie stable
}
int ConjGradientMod(float3N &X, float3Nx3N &A, float3N &B,int3 hack)
{
// obsolete!!!
// Solves for unknown X in equation AX=B
conjgrad_loopcount=0;
int n=B.count;
float3N q(n),d(n),tmp(n),r(n);
r = B - Mul(tmp,A,X); // just use B if X known to be zero
r[hack[0]] = r[hack[1]] = r[hack[2]] = float3(0,0,0);
d = r;
float s = dot(r,r);
float starget = s * squared(conjgrad_epsilon);
while( s>starget && conjgrad_loopcount++ < conjgrad_looplimit)
{
Mul(q,A,d); // q = A*d;
q[hack[0]] = q[hack[1]] = q[hack[2]] = float3(0,0,0);
float a = s/dot(d,q);
X = X + d*a;
if(conjgrad_loopcount%50==0)
{
r = B - Mul(tmp,A,X);
r[hack[0]] = r[hack[1]] = r[hack[2]] = float3(0,0,0);
}
else
{
r = r - q*a;
}
float s_prev = s;
s = dot(r,r);
d = r+d*(s/s_prev);
d[hack[0]] = d[hack[1]] = d[hack[2]] = float3(0,0,0);
}
conjgrad_lasterror = s;
return conjgrad_loopcount<conjgrad_looplimit; // true means we reached desired accuracy in given time - ie stable
}
static inline void filter(float3N &V,const float3Nx3N &S)
{
for(int i=0;i<S.blocks.count;i++)
{
V[S.blocks[i].r] = V[S.blocks[i].r]*S.blocks[i].m;
}
}
int ConjGradientFiltered(float3N &X, const float3Nx3N &A, const float3N &B,const float3Nx3N &S)
{
// Solves for unknown X in equation AX=B
conjgrad_loopcount=0;
int n=B.count;
float3N q(n),d(n),tmp(n),r(n);
r = B - Mul(tmp,A,X); // just use B if X known to be zero
filter(r,S);
d = r;
float s = dot(r,r);
float starget = s * squared(conjgrad_epsilon);
while( s>starget && conjgrad_loopcount++ < conjgrad_looplimit)
{
Mul(q,A,d); // q = A*d;
filter(q,S);
float a = s/dot(d,q);
X = X + d*a;
if(conjgrad_loopcount%50==0)
{
r = B - Mul(tmp,A,X);
filter(r,S);
}
else
{
r = r - q*a;
}
float s_prev = s;
s = dot(r,r);
d = r+d*(s/s_prev);
filter(d,S);
}
conjgrad_lasterror = s;
return conjgrad_loopcount<conjgrad_looplimit; // true means we reached desired accuracy in given time - ie stable
}
// test big vector math library:
static void testfloat3N()
{
float3N a(2),b(2),c(2);
a[0] = float3(1,2,3);
a[1] = float3(4,5,6);
b[0] = float3(10,20,30);
b[1] = float3(40,50,60);
// c = a+b+b * 10.0f;
// float d = dot(a+b,-b);
int k;
k=0;
}
class dotest{public:dotest(){testfloat3N();}}do_test_at_program_startup;
|