1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
|
//
//
// Typical 3d vector math code.
// By S Melax 1998-2008
//
//
//
#include "vecmath.h"
#include <memory.h> // for memcpy
#include <float.h>
float squared(float a){return a*a;}
float clamp(float a,const float minval, const float maxval) {return Min(maxval,Max(minval,a));}
int clamp(int a,const int minval, const int maxval) {return Min(maxval,Max(minval,a));}
float Round(float a,float precision)
{
return floorf(0.5f+a/precision)*precision;
}
float Interpolate(const float &f0,const float &f1,float alpha)
{
return f0*(1-alpha) + f1*alpha;
}
int argmin(const float a[],int n)
{
int r=0;
for(int i=1;i<n;i++)
{
if(a[i]<a[r])
{
r = i;
}
}
return r;
}
int argmax(const float a[],int n)
{
int r=0;
for(int i=1;i<n;i++)
{
if(a[i]>a[r])
{
r = i;
}
}
return r;
}
//------------ float3 (3D) --------------
float3 vabs(const float3 &v)
{
return float3(fabsf(v.x),fabsf(v.y),fabsf(v.z));
}
float3 safenormalize(const float3 &v)
{
if(magnitude(v)<=0.0f)
{
return float3(1,0,0);
}
return normalize(v);
}
float3 Round(const float3 &a,float precision)
{
return float3(Round(a.x,precision),Round(a.y,precision),Round(a.z,precision));
}
float3 Interpolate(const float3 &v0,const float3 &v1,float alpha)
{
return v0*(1-alpha) + v1*alpha;
}
float3 Orth(const float3& v)
{
float3 absv=vabs(v);
float3 u(1,1,1);
u[argmax(&absv[0],3)] =0.0f;
return normalize(cross(u,v));
}
void BoxLimits(const float3 *verts,int verts_count, float3 &bmin,float3 &bmax)
{
bmin=float3( FLT_MAX, FLT_MAX, FLT_MAX);
bmax=float3(-FLT_MAX,-FLT_MAX,-FLT_MAX);
for(int i=0;i<verts_count;i++)
{
bmin = VectorMin(bmin,verts[i]);
bmax = VectorMax(bmax,verts[i]);
}
}
void BoxLimits(const float4 *verts,int verts_count, float3 &bmin,float3 &bmax)
{
bmin=float3( FLT_MAX, FLT_MAX, FLT_MAX);
bmax=float3(-FLT_MAX,-FLT_MAX,-FLT_MAX);
for(int i=0;i<verts_count;i++)
{
bmin = VectorMin(bmin,verts[i].xyz());
bmax = VectorMax(bmax,verts[i].xyz());
}
}
int overlap(const float3 &bmina,const float3 &bmaxa,const float3 &bminb,const float3 &bmaxb)
{
for(int j=0;j<3;j++)
{
if(bmina[j]>bmaxb[j]) return 0;
if(bminb[j]>bmaxa[j]) return 0;
}
return 1;
}
// the statement v1*v2 is ambiguous since there are 3 types
// of vector multiplication
// - componantwise (for example combining colors)
// - dot product
// - cross product
// Therefore we never declare/implement this function.
// So we will never see: float3 operator*(float3 a,float3 b)
//------------ float3x3 ---------------
float Determinant(const float3x3 &m)
{
return m.x.x*m.y.y*m.z.z + m.y.x*m.z.y*m.x.z + m.z.x*m.x.y*m.y.z
-m.x.x*m.z.y*m.y.z - m.y.x*m.x.y*m.z.z - m.z.x*m.y.y*m.x.z ;
}
float3x3 Inverse(const float3x3 &a)
{
float3x3 b;
float d=Determinant(a);
assert(d!=0);
for(int i=0;i<3;i++)
{
for(int j=0;j<3;j++)
{
int i1=(i+1)%3;
int i2=(i+2)%3;
int j1=(j+1)%3;
int j2=(j+2)%3;
// reverse indexs i&j to take transpose
b[j][i] = (a[i1][j1]*a[i2][j2]-a[i1][j2]*a[i2][j1])/d;
}
}
// Matrix check=a*b; // Matrix 'check' should be the identity (or close to it)
return b;
}
float3x3 Transpose( const float3x3& m )
{
return float3x3( float3(m.x.x,m.y.x,m.z.x),
float3(m.x.y,m.y.y,m.z.y),
float3(m.x.z,m.y.z,m.z.z));
}
float3 operator*(const float3& v , const float3x3 &m ) {
return float3((m.x.x*v.x + m.y.x*v.y + m.z.x*v.z),
(m.x.y*v.x + m.y.y*v.y + m.z.y*v.z),
(m.x.z*v.x + m.y.z*v.y + m.z.z*v.z));
}
float3 operator*(const float3x3 &m,const float3& v ) {
return float3(dot(m.x,v),dot(m.y,v),dot(m.z,v));
}
float3x3 operator*( const float3x3& a, const float3x3& b )
{
return float3x3(a.x*b,a.y*b,a.z*b);
}
float3x3 operator*( const float3x3& a, const float& s )
{
return float3x3(a.x*s, a.y*s ,a.z*s);
}
float3x3 operator/( const float3x3& a, const float& s )
{
float t=1/s;
return float3x3(a.x*t, a.y*t ,a.z*t);
}
float3x3 operator+( const float3x3& a, const float3x3& b )
{
return float3x3(a.x+b.x, a.y+b.y, a.z+b.z);
}
float3x3 operator-( const float3x3& a, const float3x3& b )
{
return float3x3(a.x-b.x, a.y-b.y, a.z-b.z);
}
float3x3 &operator+=( float3x3& a, const float3x3& b )
{
a.x+=b.x;
a.y+=b.y;
a.z+=b.z;
return a;
}
float3x3 &operator-=( float3x3& a, const float3x3& b )
{
a.x-=b.x;
a.y-=b.y;
a.z-=b.z;
return a;
}
float3x3 &operator*=( float3x3& a, const float& s )
{
a.x*=s;
a.y*=s;
a.z*=s;
return a;
}
float3x3 outerprod(const float3& a,const float3& b)
{
return float3x3(a.x*b,a.y*b,a.z*b); // a is a column vector b is a row vector
}
//--------------- 4D ----------------
float4 operator*( const float4& v, const float4x4& m )
{
return v.x*m.x + v.y*m.y + v.z*m.z + v.w*m.w; // yes this actually works
}
// Dont implement m*v for now, since that might confuse us
// All our transforms are based on multiplying the "row" vector on the left
//float4 operator*(const float4x4& m , const float4& v )
//{
// return float4(dot(v,m.x),dot(v,m.y),dot(v,m.z),dot(v,m.w));
//}
float4x4 operator*( const float4x4& a, const float4x4& b )
{
return float4x4(a.x*b,a.y*b,a.z*b,a.w*b);
}
float4x4 MatrixTranspose(const float4x4 &m)
{
return float4x4(
m.x.x, m.y.x, m.z.x, m.w.x,
m.x.y, m.y.y, m.z.y, m.w.y,
m.x.z, m.y.z, m.z.z, m.w.z,
m.x.w, m.y.w, m.z.w, m.w.w );
}
float4x4 MatrixRigidInverse(const float4x4 &m)
{
float4x4 trans_inverse = MatrixTranslation(-m.w.xyz());
float4x4 rot = m;
rot.w = float4(0,0,0,1);
return trans_inverse * MatrixTranspose(rot);
}
float4x4 MatrixPerspectiveFov(float fovy, float aspect, float zn, float zf )
{
float h = 1.0f/tanf(fovy/2.0f); // view space height
float w = h / aspect ; // view space width
return float4x4(
w, 0, 0 , 0,
0, h, 0 , 0,
0, 0, zf/(zn-zf) , -1,
0, 0, zn*zf/(zn-zf) , 0 );
}
float4x4 MatrixLookAt(const float3& eye, const float3& at, const float3& up)
{
float4x4 m;
m.w.w = 1.0f;
m.w.xyz() = eye;
m.z.xyz() = normalize(eye-at);
m.x.xyz() = normalize(cross(up,m.z.xyz()));
m.y.xyz() = cross(m.z.xyz(),m.x.xyz());
return MatrixRigidInverse(m);
}
float4x4 MatrixTranslation(const float3 &t)
{
return float4x4(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
t.x,t.y,t.z,1 );
}
float4x4 MatrixRotationZ(const float angle_radians)
{
float s = sinf(angle_radians);
float c = cosf(angle_radians);
return float4x4(
c, s, 0, 0,
-s, c, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1 );
}
int operator==( const float4x4 &a, const float4x4 &b )
{
return (a.x==b.x && a.y==b.y && a.z==b.z && a.w==b.w);
}
float4x4 Inverse(const float4x4 &m)
{
float4x4 d;
float *dst = &d.x.x;
float tmp[12]; /* temp array for pairs */
float src[16]; /* array of transpose source matrix */
float det; /* determinant */
/* transpose matrix */
for ( int i = 0; i < 4; i++) {
src[i] = m(i,0) ;
src[i + 4] = m(i,1);
src[i + 8] = m(i,2);
src[i + 12] = m(i,3);
}
/* calculate pairs for first 8 elements (cofactors) */
tmp[0] = src[10] * src[15];
tmp[1] = src[11] * src[14];
tmp[2] = src[9] * src[15];
tmp[3] = src[11] * src[13];
tmp[4] = src[9] * src[14];
tmp[5] = src[10] * src[13];
tmp[6] = src[8] * src[15];
tmp[7] = src[11] * src[12];
tmp[8] = src[8] * src[14];
tmp[9] = src[10] * src[12];
tmp[10] = src[8] * src[13];
tmp[11] = src[9] * src[12];
/* calculate first 8 elements (cofactors) */
dst[0] = tmp[0]*src[5] + tmp[3]*src[6] + tmp[4]*src[7];
dst[0] -= tmp[1]*src[5] + tmp[2]*src[6] + tmp[5]*src[7];
dst[1] = tmp[1]*src[4] + tmp[6]*src[6] + tmp[9]*src[7];
dst[1] -= tmp[0]*src[4] + tmp[7]*src[6] + tmp[8]*src[7];
dst[2] = tmp[2]*src[4] + tmp[7]*src[5] + tmp[10]*src[7];
dst[2] -= tmp[3]*src[4] + tmp[6]*src[5] + tmp[11]*src[7];
dst[3] = tmp[5]*src[4] + tmp[8]*src[5] + tmp[11]*src[6];
dst[3] -= tmp[4]*src[4] + tmp[9]*src[5] + tmp[10]*src[6];
dst[4] = tmp[1]*src[1] + tmp[2]*src[2] + tmp[5]*src[3];
dst[4] -= tmp[0]*src[1] + tmp[3]*src[2] + tmp[4]*src[3];
dst[5] = tmp[0]*src[0] + tmp[7]*src[2] + tmp[8]*src[3];
dst[5] -= tmp[1]*src[0] + tmp[6]*src[2] + tmp[9]*src[3];
dst[6] = tmp[3]*src[0] + tmp[6]*src[1] + tmp[11]*src[3];
dst[6] -= tmp[2]*src[0] + tmp[7]*src[1] + tmp[10]*src[3];
dst[7] = tmp[4]*src[0] + tmp[9]*src[1] + tmp[10]*src[2];
dst[7] -= tmp[5]*src[0] + tmp[8]*src[1] + tmp[11]*src[2];
/* calculate pairs for second 8 elements (cofactors) */
tmp[0] = src[2]*src[7];
tmp[1] = src[3]*src[6];
tmp[2] = src[1]*src[7];
tmp[3] = src[3]*src[5];
tmp[4] = src[1]*src[6];
tmp[5] = src[2]*src[5];
tmp[6] = src[0]*src[7];
tmp[7] = src[3]*src[4];
tmp[8] = src[0]*src[6];
tmp[9] = src[2]*src[4];
tmp[10] = src[0]*src[5];
tmp[11] = src[1]*src[4];
/* calculate second 8 elements (cofactors) */
dst[8] = tmp[0]*src[13] + tmp[3]*src[14] + tmp[4]*src[15];
dst[8] -= tmp[1]*src[13] + tmp[2]*src[14] + tmp[5]*src[15];
dst[9] = tmp[1]*src[12] + tmp[6]*src[14] + tmp[9]*src[15];
dst[9] -= tmp[0]*src[12] + tmp[7]*src[14] + tmp[8]*src[15];
dst[10] = tmp[2]*src[12] + tmp[7]*src[13] + tmp[10]*src[15];
dst[10]-= tmp[3]*src[12] + tmp[6]*src[13] + tmp[11]*src[15];
dst[11] = tmp[5]*src[12] + tmp[8]*src[13] + tmp[11]*src[14];
dst[11]-= tmp[4]*src[12] + tmp[9]*src[13] + tmp[10]*src[14];
dst[12] = tmp[2]*src[10] + tmp[5]*src[11] + tmp[1]*src[9];
dst[12]-= tmp[4]*src[11] + tmp[0]*src[9] + tmp[3]*src[10];
dst[13] = tmp[8]*src[11] + tmp[0]*src[8] + tmp[7]*src[10];
dst[13]-= tmp[6]*src[10] + tmp[9]*src[11] + tmp[1]*src[8];
dst[14] = tmp[6]*src[9] + tmp[11]*src[11] + tmp[3]*src[8];
dst[14]-= tmp[10]*src[11] + tmp[2]*src[8] + tmp[7]*src[9];
dst[15] = tmp[10]*src[10] + tmp[4]*src[8] + tmp[9]*src[9];
dst[15]-= tmp[8]*src[9] + tmp[11]*src[10] + tmp[5]*src[8];
/* calculate determinant */
det=src[0]*dst[0]+src[1]*dst[1]+src[2]*dst[2]+src[3]*dst[3];
/* calculate matrix inverse */
det = 1/det;
for ( int j = 0; j < 16; j++)
dst[j] *= det;
return d;
}
//--------- Quaternion --------------
template<> void Quaternion::Normalize()
{
float m = sqrtf(squared(w)+squared(x)+squared(y)+squared(z));
if(m<0.000000001f) {
w=1.0f;
x=y=z=0.0f;
return;
}
(*this) *= (1.0f/m);
}
float3 rotate( const Quaternion& q, const float3& v )
{
// The following is equivalent to:
//return (q.getmatrix() * v);
float qx2 = q.x*q.x;
float qy2 = q.y*q.y;
float qz2 = q.z*q.z;
float qxqy = q.x*q.y;
float qxqz = q.x*q.z;
float qxqw = q.x*q.w;
float qyqz = q.y*q.z;
float qyqw = q.y*q.w;
float qzqw = q.z*q.w;
return float3(
(1-2*(qy2+qz2))*v.x + (2*(qxqy-qzqw))*v.y + (2*(qxqz+qyqw))*v.z ,
(2*(qxqy+qzqw))*v.x + (1-2*(qx2+qz2))*v.y + (2*(qyqz-qxqw))*v.z ,
(2*(qxqz-qyqw))*v.x + (2*(qyqz+qxqw))*v.y + (1-2*(qx2+qy2))*v.z );
}
Quaternion slerp(const Quaternion &_a, const Quaternion& b, float interp )
{
Quaternion a=_a;
if(dot(a,b) <0.0)
{
a.w=-a.w;
a.x=-a.x;
a.y=-a.y;
a.z=-a.z;
}
float d = dot(a,b);
if(d>=1.0) {
return a;
}
float theta = acosf(d);
if(theta==0.0f) { return(a);}
return a*(sinf(theta-interp*theta)/sinf(theta)) + b*(sinf(interp*theta)/sinf(theta));
}
Quaternion Interpolate(const Quaternion &q0,const Quaternion &q1,float alpha) {
return slerp(q0,q1,alpha);
}
Quaternion YawPitchRoll( float yaw, float pitch, float roll )
{
return QuatFromAxisAngle(float3(0.0f,0.0f,1.0f),DegToRad(yaw ))
* QuatFromAxisAngle(float3(1.0f,0.0f,0.0f),DegToRad(pitch))
* QuatFromAxisAngle(float3(0.0f,1.0f,0.0f),DegToRad(roll ));
}
float Yaw( const Quaternion& q )
{
static float3 v;
v=q.ydir();
return (v.y==0.0&&v.x==0.0) ? 0.0f: RadToDeg(atan2f(-v.x,v.y));
}
float Pitch( const Quaternion& q )
{
static float3 v;
v=q.ydir();
return RadToDeg(atan2f(v.z,sqrtf(squared(v.x)+squared(v.y))));
}
float Roll( const Quaternion &_q )
{
Quaternion q=_q;
q = QuatFromAxisAngle(float3(0.0f,0.0f,1.0f),-DegToRad(Yaw(q))) *q;
q = QuatFromAxisAngle(float3(1.0f,0.0f,0.0f),-DegToRad(Pitch(q))) *q;
return RadToDeg(atan2f(-q.xdir().z,q.xdir().x));
}
float Yaw( const float3& v )
{
return (v.y==0.0&&v.x==0.0) ? 0.0f: RadToDeg(atan2f(-v.x,v.y));
}
float Pitch( const float3& v )
{
return RadToDeg(atan2f(v.z,sqrtf(squared(v.x)+squared(v.y))));
}
//--------- utility functions -------------
// RotationArc()
// Given two vectors v0 and v1 this function
// returns quaternion q where q*v0==v1.
// Routine taken from game programming gems.
Quaternion RotationArc(float3 v0,float3 v1){
static Quaternion q;
v0 = normalize(v0); // Comment these two lines out if you know its not needed.
v1 = normalize(v1); // If vector is already unit length then why do it again?
float3 c = cross(v0,v1);
float d = dot(v0,v1);
if(d<=-1.0f) { float3 a=Orth(v0); return Quaternion(a.x,a.y,a.z,0);} // 180 about any orthogonal axis axis
float s = sqrtf((1+d)*2);
q.x = c.x / s;
q.y = c.y / s;
q.z = c.z / s;
q.w = s /2.0f;
return q;
}
float4x4 MatrixFromQuatVec(const Quaternion &q, const float3 &v)
{
// builds a 4x4 transformation matrix based on orientation q and translation v
float qx2 = q.x*q.x;
float qy2 = q.y*q.y;
float qz2 = q.z*q.z;
float qxqy = q.x*q.y;
float qxqz = q.x*q.z;
float qxqw = q.x*q.w;
float qyqz = q.y*q.z;
float qyqw = q.y*q.w;
float qzqw = q.z*q.w;
return float4x4(
1-2*(qy2+qz2),
2*(qxqy+qzqw),
2*(qxqz-qyqw),
0 ,
2*(qxqy-qzqw),
1-2*(qx2+qz2),
2*(qyqz+qxqw),
0 ,
2*(qxqz+qyqw),
2*(qyqz-qxqw),
1-2*(qx2+qy2),
0 ,
v.x ,
v.y ,
v.z ,
1.0f );
}
float3 PlaneLineIntersection(const float3 &normal,const float dist, const float3 &p0, const float3 &p1)
{
// returns the point where the line p0-p1 intersects the plane n&d
float3 dif;
dif = p1-p0;
float dn= dot(normal,dif);
float t = -(dist+dot(normal,p0) )/dn;
return p0 + (dif*t);
}
float3 LineProject(const float3 &p0, const float3 &p1, const float3 &a)
{
// project point a on segment [p0,p1]
float3 d= p1-p0;
float t= dot(d,(a-p0)) / dot(d,d);
return p0+ d*t;
}
float LineProjectTime(const float3 &p0, const float3 &p1, const float3 &a)
{
// project point a on segment [p0,p1]
float3 d= p1-p0;
float t= dot(d,(a-p0)) / dot(d,d);
return t;
}
float3 TriNormal(const float3 &v0, const float3 &v1, const float3 &v2)
{
// return the normal of the triangle
// inscribed by v0, v1, and v2
float3 cp=cross(v1-v0,v2-v1);
float m=magnitude(cp);
if(m==0) return float3(1,0,0);
return cp*(1.0f/m);
}
int BoxInside(const float3 &p, const float3 &bmin, const float3 &bmax)
{
return (p.x >= bmin.x && p.x <=bmax.x &&
p.y >= bmin.y && p.y <=bmax.y &&
p.z >= bmin.z && p.z <=bmax.z );
}
int BoxIntersect(const float3 &v0, const float3 &v1, const float3 &bmin, const float3 &bmax,float3 *impact)
{
if(BoxInside(v0,bmin,bmax))
{
*impact=v0;
return 1;
}
if(v0.x<=bmin.x && v1.x>=bmin.x)
{
float a = (bmin.x-v0.x)/(v1.x-v0.x);
//v.x = bmin.x;
float vy = (1-a) *v0.y + a*v1.y;
float vz = (1-a) *v0.z + a*v1.z;
if(vy>=bmin.y && vy<=bmax.y && vz>=bmin.z && vz<=bmax.z)
{
impact->x = bmin.x;
impact->y = vy;
impact->z = vz;
return 1;
}
}
else if(v0.x >= bmax.x && v1.x <= bmax.x)
{
float a = (bmax.x-v0.x)/(v1.x-v0.x);
//v.x = bmax.x;
float vy = (1-a) *v0.y + a*v1.y;
float vz = (1-a) *v0.z + a*v1.z;
if(vy>=bmin.y && vy<=bmax.y && vz>=bmin.z && vz<=bmax.z)
{
impact->x = bmax.x;
impact->y = vy;
impact->z = vz;
return 1;
}
}
if(v0.y<=bmin.y && v1.y>=bmin.y)
{
float a = (bmin.y-v0.y)/(v1.y-v0.y);
float vx = (1-a) *v0.x + a*v1.x;
//v.y = bmin.y;
float vz = (1-a) *v0.z + a*v1.z;
if(vx>=bmin.x && vx<=bmax.x && vz>=bmin.z && vz<=bmax.z)
{
impact->x = vx;
impact->y = bmin.y;
impact->z = vz;
return 1;
}
}
else if(v0.y >= bmax.y && v1.y <= bmax.y)
{
float a = (bmax.y-v0.y)/(v1.y-v0.y);
float vx = (1-a) *v0.x + a*v1.x;
// vy = bmax.y;
float vz = (1-a) *v0.z + a*v1.z;
if(vx>=bmin.x && vx<=bmax.x && vz>=bmin.z && vz<=bmax.z)
{
impact->x = vx;
impact->y = bmax.y;
impact->z = vz;
return 1;
}
}
if(v0.z<=bmin.z && v1.z>=bmin.z)
{
float a = (bmin.z-v0.z)/(v1.z-v0.z);
float vx = (1-a) *v0.x + a*v1.x;
float vy = (1-a) *v0.y + a*v1.y;
// v.z = bmin.z;
if(vy>=bmin.y && vy<=bmax.y && vx>=bmin.x && vx<=bmax.x)
{
impact->x = vx;
impact->y = vy;
impact->z = bmin.z;
return 1;
}
}
else if(v0.z >= bmax.z && v1.z <= bmax.z)
{
float a = (bmax.z-v0.z)/(v1.z-v0.z);
float vx = (1-a) *v0.x + a*v1.x;
float vy = (1-a) *v0.y + a*v1.y;
// v.z = bmax.z;
if(vy>=bmin.y && vy<=bmax.y && vx>=bmin.x && vx<=bmax.x)
{
impact->x = vx;
impact->y = vy;
impact->z = bmax.z;
return 1;
}
}
return 0;
}
float DistanceBetweenLines(const float3 &ustart, const float3 &udir, const float3 &vstart, const float3 &vdir, float3 *upoint, float3 *vpoint)
{
static float3 cp;
cp = normalize(cross(udir,vdir));
float distu = -dot(cp,ustart);
float distv = -dot(cp,vstart);
float dist = (float)fabs(distu-distv);
if(upoint)
{
float3 normal = normalize(cross(vdir,cp));
*upoint = PlaneLineIntersection(normal,-dot(normal,vstart),ustart,ustart+udir);
}
if(vpoint)
{
float3 normal = normalize(cross(udir,cp));
*vpoint = PlaneLineIntersection(normal,-dot(normal,ustart),vstart,vstart+vdir);
}
return dist;
}
Quaternion VirtualTrackBall(const float3 &cop, const float3 &cor, const float3 &dir1, const float3 &dir2)
{
// routine taken from game programming gems.
// Implement track ball functionality to spin stuf on the screen
// cop center of projection
// cor center of rotation
// dir1 old mouse direction
// dir2 new mouse direction
// pretend there is a sphere around cor. Then find the points
// where dir1 and dir2 intersect that sphere. Find the
// rotation that takes the first point to the second.
float m;
// compute plane
float3 nrml = cor - cop;
float fudgefactor = 1.0f/(magnitude(nrml) * 0.25f); // since trackball proportional to distance from cop
nrml = normalize(nrml);
float dist = -dot(nrml,cor);
float3 u= PlaneLineIntersection(nrml,dist,cop,cop+dir1);
u=u-cor;
u=u*fudgefactor;
m= magnitude(u);
if(m>1)
{
u/=m;
}
else
{
u=u - (nrml * sqrtf(1-m*m));
}
float3 v= PlaneLineIntersection(nrml,dist,cop,cop+dir2);
v=v-cor;
v=v*fudgefactor;
m= magnitude(v);
if(m>1)
{
v/=m;
}
else
{
v=v - (nrml * sqrtf(1-m*m));
}
return RotationArc(u,v);
}
int countpolyhit=0;
int HitCheckPoly(const float3 *vert, const int n, const float3 &v0, const float3 &v1, float3 *impact, float3 *normal)
{
countpolyhit++;
int i;
float3 nrml(0,0,0);
for(i=0;i<n;i++)
{
int i1=(i+1)%n;
int i2=(i+2)%n;
nrml = nrml + cross(vert[i1]-vert[i],vert[i2]-vert[i1]);
}
float m = magnitude(nrml);
if(m==0.0)
{
return 0;
}
nrml = nrml * (1.0f/m);
float dist = -dot(nrml,vert[0]);
float d0,d1;
if((d0=dot(v0,nrml)+dist) <0 || (d1=dot(v1,nrml)+dist) >0)
{
return 0;
}
static float3 the_point;
// By using the cached plane distances d0 and d1
// we can optimize the following:
// the_point = planelineintersection(nrml,dist,v0,v1);
float a = d0/(d0-d1);
the_point = v0*(1-a) + v1*a;
int inside=1;
for(int j=0;inside && j<n;j++)
{
// let inside = 0 if outside
float3 pp1,pp2,side;
pp1 = vert[j] ;
pp2 = vert[(j+1)%n];
side = cross((pp2-pp1),(the_point-pp1));
inside = (dot(nrml,side) >= 0.0);
}
if(inside)
{
if(normal){*normal=nrml;}
if(impact){*impact=the_point;}
}
return inside;
}
int SolveQuadratic(float a,float b,float c,float *ta,float *tb) // if true returns roots ta,tb where ta<=tb
{
assert(ta);
assert(tb);
float d = b*b-4.0f*a*c; // discriminant
if(d<0.0f) return 0;
float sqd = sqrtf(d);
*ta = (-b-sqd) / (2.0f * a);
*tb = (-b+sqd) / (2.0f * a);
return 1;
}
int HitCheckRaySphere(const float3& sphereposition,float radius, const float3& _v0, const float3& _v1, float3 *impact,float3 *normal)
{
assert(impact);
assert(normal);
float3 dv = _v1-_v0;
float3 v0 = _v0 - sphereposition; // solve in coord system of the sphere
if(radius<=0.0f || _v0==_v1) return 0; // only true if point moves from outside to inside sphere.
float a = dot(dv,dv);
float b = 2.0f * dot(dv,v0);
float c = dot(v0,v0) - radius*radius;
if(c<0.0f) return 0; // we are already inside the sphere.
float ta, tb;
int doesIntersect = SolveQuadratic(a, b, c, &ta, &tb);
if (!doesIntersect) return 0;
if (ta >= 0.0f && ta <= 1.0f && (ta <= tb || tb<=0.0f))
{
*impact = _v0 + dv * ta;
*normal = (v0 + dv*ta)/radius;
return 1;
}
if (tb >= 0.0f && tb <= 1.0f)
{
assert(tb <= ta || ta <=0.0f); // tb must be better than ta
*impact = _v0 + dv * tb;
*normal = (v0 + dv*tb)/radius;
return 1;
}
return 0;
}
int HitCheckRayCylinder(const float3 &p0,const float3 &p1,float radius,const float3& _v0,const float3& _v1, float3 *impact,float3 *normal)
{
assert(impact);
assert(normal);
// only concerned about hitting the sides, not the caps for now
float3x3 m=RotationArc(p1-p0,float3(0,0,1.0f)).getmatrix();
float h = ((p1-p0)*m ).z;
float3 v0 = (_v0-p0) *m;
float3 v1 = (_v1-p0) *m;
if(v0.z <= 0.0f && v1.z <= 0.0f) return 0; // entirely below cylinder
if(v0.z >= h && v1.z >= h ) return 0; // ray is above cylinder
if(v0.z <0.0f ) v0 = PlaneLineIntersection(float3(0,0,1.0f), 0,v0,v1); // crop to cylinder range
if(v1.z <0.0f ) v1 = PlaneLineIntersection(float3(0,0,1.0f), 0,v0,v1);
if(v0.z > h ) v0 = PlaneLineIntersection(float3(0,0,1.0f),-h,v0,v1);
if(v1.z > h ) v1 = PlaneLineIntersection(float3(0,0,1.0f),-h,v0,v1);
if(v0.x==v1.x && v0.y==v1.y) return 0;
float3 dv = v1-v0;
float a = dv.x*dv.x+dv.y*dv.y;
float b = 2.0f * (dv.x*v0.x+dv.y*v0.y);
float c = (v0.x*v0.x+v0.y*v0.y) - radius*radius;
if(c<0.0f) return 0; // we are already inside the cylinder .
float ta, tb;
int doesIntersect = SolveQuadratic(a, b, c, &ta, &tb);
if (!doesIntersect) return 0;
if (ta >= 0.0f && ta <= 1.0f && (ta <= tb || tb<=0.0f))
{
*impact = (v0 + dv * ta)*Transpose(m) + p0;
*normal = (float3(v0.x,v0.y,0.0f) + float3(dv.x,dv.y,0) * ta) /radius * Transpose(m);
return 1;
}
if (tb >= 0.0f && tb <= 1.0f)
{
assert(tb <= ta || ta <=0.0f); // tb must be better than ta
*impact = (v0 + dv * tb)*Transpose(m) + p0; // compute intersection in original space
*normal = (float3(v0.x,v0.y,0.0f) + float3(dv.x,dv.y,0) * tb) /radius * Transpose(m);
return 1;
}
return 0;
}
int HitCheckSweptSphereTri(const float3 &p0,const float3 &p1,const float3 &p2,float radius, const float3& v0,const float3& _v1, float3 *impact,float3 *normal)
{
float3 unused;
if(!normal) normal=&unused;
float3 v1=_v1; // so we can update v1 after each sub intersection test if necessary
int hit=0;
float3 cp = cross(p1-p0,p2-p0);
if(dot(cp,v1-v0)>=0.0f) return 0; // coming from behind and/or moving away
float3 n = normalize(cp);
float3 tv[3];
tv[0] = p0 + n*radius;
tv[1] = p1 + n*radius;
tv[2] = p2 + n*radius;
hit += HitCheckPoly(tv,3,v0,v1,&v1,normal);
hit += HitCheckRayCylinder(p0,p1,radius,v0,v1,&v1,normal);
hit += HitCheckRayCylinder(p1,p2,radius,v0,v1,&v1,normal);
hit += HitCheckRayCylinder(p2,p0,radius,v0,v1,&v1,normal);
hit += HitCheckRaySphere(p0,radius,v0,v1,&v1,normal);
hit += HitCheckRaySphere(p1,radius,v0,v1,&v1,normal);
hit += HitCheckRaySphere(p2,radius,v0,v1,&v1,normal);
if(hit && impact) *impact = v1 + *normal * 0.001f;
return hit;
}
float3 PlanesIntersection(const Plane &p0,const Plane &p1, const Plane &p2)
{
float3x3 mp =Transpose(float3x3(p0.normal(),p1.normal(),p2.normal()));
float3x3 mi = Inverse(mp);
float3 b(p0.dist(),p1.dist(),p2.dist());
return -b * mi;
}
float3 PlanesIntersection(const Plane *planes,int planes_count,const float3 &seed)
{
int i;
float3x3 A; // gets initilized to 0 matrix
float3 b(0,0,0);
for(i=0;i<planes_count;i++)
{
const Plane &p=planes[i];
A += outerprod(p.normal(),p.normal());
b += p.normal() * -p.dist();
}
float3x3 evecs = Diagonalizer(A).getmatrix(); // eigenvectors
float3 evals = Diagonal(evecs*A*Transpose(evecs)); // eigenvalues
for(i=0;i<3;i++)
{
if(fabsf(evals[i])<1.0f) // not sure if they are necessarily positive
{
Plane p;
p.normal() = evecs[i]* squared(1.0f-evals[i]);
p.dist() = -dot(seed,p.normal());
A += outerprod(p.normal(),p.normal());
b += p.normal() * -p.dist();
}
}
return Inverse(A) * b;
}
Plane Transform(const Plane &p, const float3 &translation, const Quaternion &rotation)
{
// Transforms the plane by the given translation/rotation.
float3 newnormal = rotate(rotation,p.normal());
return Plane(newnormal, p.dist() - dot(newnormal,translation));
}
float3 PlaneProject(const Plane &plane, const float3 &point)
{
return point - plane.normal() * (dot(point,plane.normal())+plane.dist());
}
float3 PlaneLineIntersection(const Plane &plane, const float3 &p0, const float3 &p1)
{
// returns the point where the line p0-p1 intersects the plane n&d
float3 dif;
dif = p1-p0;
float dn= dot(plane.normal(),dif);
float t = -(plane.dist()+dot(plane.normal(),p0) )/dn;
return p0 + (dif*t);
}
int Clip(const float3 &plane_normal,float plane_dist,const float3 *verts_in,int count_in,float3* verts_out)
{
// clips a polygon specified by the non-indexed vertex list verts_in.
// verts_out must be preallocated with a size >= count+1
assert(verts_out);
int n=0;
int prev_status = (dot(plane_normal,verts_in[count_in-1])+plane_dist > 0) ;
for(int i=0;i<count_in;i++)
{
int status = (dot(plane_normal,verts_in[i])+plane_dist > 0) ;
if(status != prev_status)
{
verts_out[n++] = PlaneLineIntersection(plane_normal,plane_dist,verts_in[(i==0)?count_in-1:i-1],verts_in[i]);
}
if(status==0) // under
{
verts_out[n++] = verts_in[i];
}
}
assert(n<=count_in+1); // remove if intention to use this routine on convex polygons
return n;
}
int ClipPolyPoly(const float3 &normal,const float3 *clipper,int clipper_count,const float3 *verts_in, int in_count,float3 *scratch)
{
// clips polys against each other.
// requires sufficiently allocated temporary memory in scratch buffer
// function returns final number of vertices in clipped polygon.
// Resulting vertices are returned in the scratch buffer.
// if the arrays are the same &verts_in==&scratch the routine should still work anyways.
// the first argument (normal) is the normal of polygon clipper.
// its generally assumed both are convex polygons.
assert(scratch); // size should be >= 2*(clipper_count+in_count)
int i;
int bsize = clipper_count+in_count;
int count = in_count;
for(i=0;i<clipper_count;i++)
{
int i1 = (i+1)%clipper_count;
float3 n = cross(clipper[i1]-clipper[i],normal);
if(n==float3(0,0,0)) continue;
n=normalize(n);
count = Clip(n,-dot(clipper[i],n),(i==0)?verts_in:(i%2)?scratch:scratch+bsize,count,(i%2)?scratch+bsize:scratch);
assert(count<bsize);
}
if(clipper_count%2) memcpy(scratch,scratch+bsize,count*sizeof(float3));
return count;
}
float Volume(const float3 *vertices, const int3 *tris, const int count)
{
// count is the number of triangles (tris)
float volume=0;
for(int i=0; i<count; i++) // for each triangle
{
volume += Determinant(float3x3(vertices[tris[i][0]],vertices[tris[i][1]],vertices[tris[i][2]])); //divide by 6 later for efficiency
}
return volume/6.0f; // since the determinant give 6 times tetra volume
}
float3 CenterOfMass(const float3 *vertices, const int3 *tris, const int count)
{
// count is the number of triangles (tris)
float3 com(0,0,0);
float volume=0; // actually accumulates the volume*6
for(int i=0; i<count; i++) // for each triangle
{
float3x3 A(vertices[tris[i][0]],vertices[tris[i][1]],vertices[tris[i][2]]);
float vol=Determinant(A); // dont bother to divide by 6
com += vol * (A.x+A.y+A.z); // divide by 4 at end
volume+=vol;
}
com /= volume*4.0f;
return com;
}
float3x3 Inertia(const float3 *vertices, const int3 *tris, const int count, const float3& com /* =float3(0,0,0) */ )
{
// count is the number of triangles (tris)
// The moments are calculated based on the center of rotation (com) which defaults to [0,0,0] if unsupplied
// assume mass==1.0 you can multiply by mass later.
// for improved accuracy the next 3 variables, the determinant d, and its calculation should be changed to double
float volume=0; // technically this variable accumulates the volume times 6
float3 diag(0,0,0); // accumulate matrix main diagonal integrals [x*x, y*y, z*z]
float3 offd(0,0,0); // accumulate matrix off-diagonal integrals [y*z, x*z, x*y]
for(int i=0; i<count; i++) // for each triangle
{
float3x3 A(vertices[tris[i][0]]-com,vertices[tris[i][1]]-com,vertices[tris[i][2]]-com); // matrix trick for volume calc by taking determinant
float d = Determinant(A); // vol of tiny parallelapiped= d * dr * ds * dt (the 3 partials of my tetral triple integral equasion)
volume +=d; // add vol of current tetra (note it could be negative - that's ok we need that sometimes)
for(int j=0;j<3;j++)
{
int j1=(j+1)%3;
int j2=(j+2)%3;
diag[j] += (A[0][j]*A[1][j] + A[1][j]*A[2][j] + A[2][j]*A[0][j] +
A[0][j]*A[0][j] + A[1][j]*A[1][j] + A[2][j]*A[2][j] ) *d; // divide by 60.0f later;
offd[j] += (A[0][j1]*A[1][j2] + A[1][j1]*A[2][j2] + A[2][j1]*A[0][j2] +
A[0][j1]*A[2][j2] + A[1][j1]*A[0][j2] + A[2][j1]*A[1][j2] +
A[0][j1]*A[0][j2]*2+ A[1][j1]*A[1][j2]*2+ A[2][j1]*A[2][j2]*2 ) *d; // divide by 120.0f later
}
}
diag /= volume*(60.0f /6.0f); // divide by total volume (vol/6) since density=1/volume
offd /= volume*(120.0f/6.0f);
return float3x3(diag.y+diag.z , -offd.z , -offd.y,
-offd.z , diag.x+diag.z, -offd.x,
-offd.y , -offd.x , diag.x+diag.y );
}
float3x3 ShapeInertiaContrib(const float3& cor, const float3& position, const Quaternion &orientation,
const float3& shape_com, const float3x3& shape_inertia, float shape_mass)
{
// transforms 3x3 inertia tensor from local reference frame to a more global one.
// essentially returns the contribution of a subshape to the inertia of a larger rigid body
// typical usage:
// foreach shape s { totalinertia += InertiaContribution(...); }
// cor - new center of rotation that we are translating to.
// This could be the center of mass of the compound object.
// Another application is when an object is attached to something (nail-joint) that is static, in which
// one easy way to implement this is to lock the center of rotation and adjust the inertia accordingly.
// position & orientation - is the current pose or transform of the shape.
// Obviously position, orientation and cor are all described wrt the same reference frame.
// shape_com and shape_inertia are the center of mass and the inertia of the shape in the local coordinate system of that shape.
// To clarify, if a shape happened to be located somewhere else then position or orientation would be different, but
// com and inertia would be the same.
float3x3 Identity(1.0f,0,0,0,1.0f,0,0,0,1.0f);
float3x3 R = orientation.getmatrix();
float3 r = (shape_com*R + position) - cor;
return Transpose(R)*shape_inertia*R + (Identity*dot(r,r)-outerprod(r,r))*shape_mass;
}
Quaternion Diagonalizer(const float3x3 &A)
{
// A must be a symmetric matrix.
// returns quaternion q such that its corresponding matrix Q
// can be used to Diagonalize A
// Diagonal matrix D = Q * A * Transpose(Q); and A = QT*D*Q
// The rows of q are the eigenvectors D's diagonal is the eigenvalues
// As per 'row' convention if float3x3 Q = q.getmatrix(); then v*Q = q*v*conj(q)
int maxsteps=24; // certainly wont need that many.
int i;
Quaternion q(0,0,0,1);
for(i=0;i<maxsteps;i++)
{
float3x3 Q = q.getmatrix(); // v*Q == q*v*conj(q)
float3x3 D = Q * A * Transpose(Q); // A = Q^T*D*Q
float3 offdiag(D[1][2],D[0][2],D[0][1]); // elements not on the diagonal
float3 om(fabsf(offdiag.x),fabsf(offdiag.y),fabsf(offdiag.z)); // mag of each offdiag elem
int k = (om.x>om.y&&om.x>om.z)?0: (om.y>om.z)? 1 : 2; // index of largest element of offdiag
int k1 = (k+1)%3;
int k2 = (k+2)%3;
if(offdiag[k]==0.0f) break; // diagonal already
float thet = (D[k2][k2]-D[k1][k1])/(2.0f*offdiag[k]);
float sgn = (thet>0.0f)?1.0f:-1.0f;
thet *= sgn; // make it positive
float t = sgn /(thet +((thet<1.E6f)?sqrtf(squared(thet)+1.0f):thet)) ; // sign(T)/(|T|+sqrt(T^2+1))
float c = 1.0f/sqrtf(squared(t)+1.0f); // c= 1/(t^2+1) , t=s/c
if(c==1.0f) break; // no room for improvement - reached machine precision.
Quaternion jr(0,0,0,0); // jacobi rotation for this iteration.
jr[k] = sgn*sqrtf((1.0f-c)/2.0f); // using 1/2 angle identity sin(a/2) = sqrt((1-cos(a))/2)
jr[k] *= -1.0f; // since our quat-to-matrix convention was for v*M instead of M*v
jr.w = sqrtf(1.0f - squared(jr[k]));
if(jr.w==1.0f) break; // reached limits of floating point precision
q = q*jr;
q.Normalize();
}
return q;
}
float3 Diagonal(const float3x3 &M)
{
return float3(M[0][0],M[1][1],M[2][2]);
}
|