File: vecmath.h

package info (click to toggle)
bullet 2.83.7%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 48,772 kB
  • sloc: cpp: 355,312; lisp: 12,087; ansic: 11,969; python: 644; makefile: 116; xml: 27
file content (466 lines) | stat: -rw-r--r-- 20,805 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
// 
//
//  Typical 3d vector math code.
//  By S Melax 1998-2008
// 
//

#ifndef SM_VEC_MATH_H
#define SM_VEC_MATH_H

#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <xmmintrin.h>

#define M_PIf (3.1415926535897932384626433832795f)

inline float DegToRad(float angle_degrees) { return angle_degrees * M_PIf / 180.0f; } // returns Radians.
inline float RadToDeg(float angle_radians) { return angle_radians * 180.0f / M_PIf; } // returns Degrees.

#define OFFSET(Class,Member)  (((char*) (&(((Class*)NULL)-> Member )))- ((char*)NULL))




int    argmin(const float a[],int n);
int    argmax(const float a[],int n);
float  squared(float a); 
float  clamp(float a,const float minval=0.0f, const float maxval=1.0f);
int    clamp(int   a,const int minval,const int maxval) ;
float  Round(float a,float precision);
float  Interpolate(const float &f0,const float &f1,float alpha) ;

template <class T>
void Swap(T &a,T &b) 
{
	T tmp = a;
	a=b;
	b=tmp;
}



template <class T>
T Max(const T &a,const T &b) 
{
	return (a>b)?a:b;
}

template <class T>
T Min(const T &a,const T &b) 
{
	return (a<b)?a:b;
}

//for template normalize functions:
inline float  squareroot(float  a){return sqrtf(a);}
inline double squareroot(double a){return sqrt(a); }

//----------------------------------



//-------- 2D --------


template<class T>
class vec2
{
 public:
	T x,y;
	inline vec2(){x=0;y=0;}
	inline vec2(const T &_x, const T &_y){x=_x;y=_y;}
	inline T& operator[](int i) {return ((T*)this)[i];}
	inline const T& operator[](int i) const {return ((T*)this)[i];}
};

typedef vec2<int>     int2;
typedef vec2<float>   float2;


template<class T> inline int operator ==(const vec2<T> &a,const vec2<T> &b) {return (a.x==b.x && a.y==b.y);}
template<class T> inline vec2<T> operator-( const vec2<T>& a, const vec2<T>& b ){return vec2<T>(a.x-b.x,a.y-b.y);}
template<class T> inline vec2<T> operator+( const vec2<T>& a, const vec2<T>& b ){return float2(a.x+b.x,a.y+b.y);}

//--------- 3D ---------



template<class T>
class vec3
{
 public:
	T x,y,z;
	inline vec3(){x=0;y=0;z=0;};
	inline vec3(const T &_x,const T &_y,const T &_z){x=_x;y=_y;z=_z;};
	inline T& operator[](int i) {return ((T*)this)[i];}
	inline const T& operator[](int i) const {return ((T*)this)[i];}
};


typedef vec3<int>   int3;
typedef vec3<short> short3;
typedef vec3<float> float3;

// due to ambiguity there is no overloaded operators for v3*v3 use dot,cross,outerprod,cmul 
template<class T> inline int operator==(const vec3<T> &a,const vec3<T> &b) {return (a.x==b.x && a.y==b.y && a.z==b.z);}
template<class T> inline int operator!=(const vec3<T> &a,const vec3<T> &b) {return !(a==b);}
template<class T> inline vec3<T> operator+(const vec3<T>& a, const vec3<T>& b ){return vec3<T>(a.x+b.x, a.y+b.y, a.z+b.z);}
template<class T> inline vec3<T> operator-(const vec3<T>& a, const vec3<T>& b ){return vec3<T>(a.x-b.x, a.y-b.y, a.z-b.z);}
template<class T> inline vec3<T> operator-(const vec3<T>& v){return vec3<T>(-v.x,-v.y,-v.z );}
template<class T> inline vec3<T> operator*(const vec3<T>& v, const T &s ){ return vec3<T>( v.x*s, v.y*s, v.z*s );}
template<class T> inline vec3<T> operator*(T s, const vec3<T>& v ){return v*s;}
template<class T> inline vec3<T> operator/(const vec3<T>& v, T s ){return vec3<T>( v.x/s, v.y/s, v.z/s );}
template<class T> inline T       dot  (const vec3<T>& a, const vec3<T>& b){return a.x*b.x + a.y*b.y + a.z*b.z;}
template<class T> inline vec3<T> cmul (const vec3<T>& a, const vec3<T>& b){return vec3<T>(a.x*b.x, a.y*b.y, a.z*b.z);}
template<class T> inline vec3<T> cross(const vec3<T>& a, const vec3<T>& b){return vec3<T>(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x);}
template<class T> inline T        magnitude( const vec3<T>& v ){return squareroot(dot(v,v));}
template<class T> inline vec3<T>  normalize( const vec3<T>& v ){return v/magnitude(v);}
template<class T> inline vec3<T>& operator+=(vec3<T>& a, const vec3<T>& b){a.x+=b.x;a.y+=b.y;a.z+=b.z;return a;}
template<class T> inline vec3<T>& operator-=(vec3<T>& a, const vec3<T>& b){a.x-=b.x;a.y-=b.y;a.z-=b.z;return a;}
template<class T> inline vec3<T>& operator*=(vec3<T>& v, T s){v.x*=s;v.y*=s;v.z*= s;return v;}
template<class T> inline vec3<T>& operator/=(vec3<T>& v, T s){v.x/=s;v.y/=s;v.z/=s;return v;}


float3 safenormalize(const float3 &v);
float3 vabs(const float3 &v);
float3 Interpolate(const float3 &v0,const float3 &v1,float alpha);
float3 Round(const float3& a,float precision);
template<class T> inline vec3<T>VectorMin(const  vec3<T> &a,const  vec3<T> &b) {return  vec3<T>(Min(a.x,b.x),Min(a.y,b.y),Min(a.z,b.z));}
template<class T> inline vec3<T>VectorMax(const  vec3<T> &a,const  vec3<T> &b) {return  vec3<T>(Max(a.x,b.x),Max(a.y,b.y),Max(a.z,b.z));}
int overlap(const float3 &bmina,const float3 &bmaxa,const float3 &bminb,const float3 &bmaxb);

template <class T>
class mat3x3
{
  public:
	vec3<T> x,y,z;  // the 3 rows of the Matrix
	inline mat3x3(){}
	inline mat3x3(const T &xx,const T &xy,const T &xz,const T &yx,const T &yy,const T &yz,const T &zx,const T &zy,const T &zz):x(xx,xy,xz),y(yx,yy,yz),z(zx,zy,zz){}
	inline mat3x3(const vec3<T> &_x,const vec3<T> &_y,const vec3<T> &_z):x(_x),y(_y),z(_z){}
	inline vec3<T>&       operator[](int i)       {return (&x)[i];}
	inline const vec3<T>& operator[](int i) const {return (&x)[i];}
	inline T&        operator()(int r, int c)       {return ((&x)[r])[c];}
	inline const T&  operator()(int r, int c) const {return ((&x)[r])[c];}
}; 
typedef mat3x3<float> float3x3;

float3x3 Transpose( const float3x3& m );
template<class T> vec3<T> operator*( const vec3<T>& v  , const mat3x3<T>& m  )
{
	return vec3<T>((m.x.x*v.x + m.y.x*v.y + m.z.x*v.z), 
				  (m.x.y*v.x + m.y.y*v.y + m.z.y*v.z), 
				  (m.x.z*v.x + m.y.z*v.y + m.z.z*v.z));
}

float3   operator*( const float3x3& m , const float3& v   );
float3x3 operator*( const float3x3& m , const float& s   );
float3x3 operator*( const float3x3& ma, const float3x3& mb );
float3x3 operator/( const float3x3& a, const float& s ) ;
float3x3 operator+( const float3x3& a, const float3x3& b );
float3x3 operator-( const float3x3& a, const float3x3& b );
float3x3 &operator+=( float3x3& a, const float3x3& b );
float3x3 &operator-=( float3x3& a, const float3x3& b );
float3x3 &operator*=( float3x3& a, const float& s );
float    Determinant(const float3x3& m );
float3x3 Inverse(const float3x3& a);  // its just 3x3 so we simply do that cofactor method
float3x3 outerprod(const float3& a,const float3& b);

//-------- 4D Math --------

template<class T>
class vec4
{
public:
	T x,y,z,w;
	inline vec4(){x=0;y=0;z=0;w=0;};
	inline vec4(const T &_x, const T &_y, const T &_z, const T &_w){x=_x;y=_y;z=_z;w=_w;}
	inline vec4(const vec3<T> &v,const T &_w){x=v.x;y=v.y;z=v.z;w=_w;}
	//operator float *() { return &x;};
	T& operator[](int i) {return ((T*)this)[i];}
	const T& operator[](int i) const {return ((T*)this)[i];}
	inline const vec3<T>& xyz() const { return *((vec3<T>*)this);}
	inline vec3<T>&       xyz()       { return *((vec3<T>*)this);}
};


typedef vec4<float> float4;
typedef vec4<int>   int4;
typedef vec4<unsigned char> byte4; 


template<class T> inline int operator==(const vec4<T> &a,const vec4<T> &b) {return (a.x==b.x && a.y==b.y && a.z==b.z && a.w==b.w);}
template<class T> inline int operator!=(const vec4<T> &a,const vec4<T> &b) {return !(a==b);}
template<class T> inline vec4<T> operator+(const vec4<T>& a, const vec4<T>& b ){return vec4<T>(a.x+b.x,a.y+b.y,a.z+b.z,a.w+b.w);}
template<class T> inline vec4<T> operator-(const vec4<T>& a, const vec4<T>& b ){return vec4<T>(a.x-b.x,a.y-b.y,a.z-b.z,a.w-b.w);}
template<class T> inline vec4<T> operator-(const vec4<T>& v){return vec4<T>(-v.x,-v.y,-v.z,-v.w);}
template<class T> inline vec4<T> operator*(const vec4<T>& v, const T &s ){ return vec4<T>( v.x*s, v.y*s, v.z*s,v.w*s);}
template<class T> inline vec4<T> operator*(T s, const vec4<T>& v ){return v*s;}
template<class T> inline vec4<T> operator/(const vec4<T>& v, T s ){return vec4<T>( v.x/s, v.y/s, v.z/s,v.w/s );}
template<class T> inline T         dot(const vec4<T>& a, const vec4<T>& b ){return a.x*b.x + a.y*b.y + a.z*b.z+a.w*b.w;}
template<class T> inline vec4<T>  cmul(const vec4<T> &a, const vec4<T> &b) {return vec4<T>(a.x*b.x, a.y*b.y, a.z*b.z,a.w*b.w);}
template<class T> inline vec4<T>& operator+=(vec4<T>& a, const vec4<T>& b ){a.x+=b.x;a.y+=b.y;a.z+=b.z;a.w+=b.w;return a;}
template<class T> inline vec4<T>& operator-=(vec4<T>& a, const vec4<T>& b ){a.x-=b.x;a.y-=b.y;a.z-=b.z;a.w-=b.w;return a;}
template<class T> inline vec4<T>& operator*=(vec4<T>& v, T s){v.x*=s;v.y*=s;v.z*=s;v.w*=s;return v;}
template<class T> inline vec4<T>& operator/=(vec4<T>& v, T s){v.x/=s;v.y/=s;v.z/=s;v.w/=s;return v;}
template<class T> inline T        magnitude( const vec4<T>& v ){return squareroot(dot(v,v));}
template<class T> inline vec4<T>  normalize( const vec4<T>& v ){return v/magnitude(v);}



struct D3DXMATRIX; 

template<class T>
class mat4x4
{
  public:
	vec4<T> x,y,z,w;  // the 4 rows
	inline mat4x4(){}
	inline mat4x4(const vec4<T> &_x, const vec4<T> &_y, const vec4<T> &_z, const vec4<T> &_w):x(_x),y(_y),z(_z),w(_w){}
	inline mat4x4(const T& m00, const T& m01, const T& m02, const T& m03, 
	         const T& m10, const T& m11, const T& m12, const T& m13, 
			 const T& m20, const T& m21, const T& m22, const T& m23, 
			 const T& m30, const T& m31, const T& m32, const T& m33 )
			:x(m00,m01,m02,m03),y(m10,m11,m12,m13),z(m20,m21,m22,m23),w(m30,m31,m32,m33){}
	inline vec4<T>&       operator[](int i)       {assert(i>=0&&i<4);return (&x)[i];}
	inline const vec4<T>& operator[](int i) const {assert(i>=0&&i<4);return (&x)[i];}
	inline T&       operator()(int r, int c)       {assert(r>=0&&r<4&&c>=0&&c<4);return ((&x)[r])[c];}
	inline const T& operator()(int r, int c) const {assert(r>=0&&r<4&&c>=0&&c<4);return ((&x)[r])[c];}
    inline operator       T* ()       {return &x.x;}
    inline operator const T* () const {return &x.x;}
	operator       struct D3DXMATRIX* ()       { return (struct D3DXMATRIX*) this;}
	operator const struct D3DXMATRIX* () const { return (struct D3DXMATRIX*) this;}
};

typedef mat4x4<float> float4x4;


float4x4 operator*( const float4x4& a, const float4x4& b );
float4   operator*( const float4& v, const float4x4& m );
float4x4 Inverse(const float4x4 &m);
float4x4 MatrixRigidInverse(const float4x4 &m);
float4x4 MatrixTranspose(const float4x4 &m);
float4x4 MatrixPerspectiveFov(float fovy, float Aspect, float zn, float zf );
float4x4 MatrixTranslation(const float3 &t);
float4x4 MatrixRotationZ(const float angle_radians);
float4x4 MatrixLookAt(const float3& eye, const float3& at, const float3& up);
int      operator==( const float4x4 &a, const float4x4 &b );


//-------- Quaternion ------------

template<class T>
class quaternion : public vec4<T>
{
 public:
	inline quaternion() { this->x = this->y = this->z = 0.0f; this->w = 1.0f; }
	inline quaternion(const T &_x, const T &_y, const T &_z, const T &_w){this->x=_x;this->y=_y;this->z=_z;this->w=_w;}
	inline explicit quaternion(const vec4<T> &v):vec4<T>(v){}
	T angle() const { return acosf(this->w)*2.0f; }
	vec3<T> axis() const { vec3<T> a(this->x,this->y,this->z); if(fabsf(angle())<0.0000001f) return vec3<T>(1,0,0); return a*(1/sinf(angle()/2.0f)); }
	inline vec3<T> xdir() const { return vec3<T>( 1-2*(this->y*this->y+this->z*this->z),  2*(this->x*this->y+this->w*this->z),
												 2*(this->x*this->z-this->w*this->y) ); }
	inline vec3<T> ydir() const { return vec3<T>(   2*(this->x*this->y-this->w*this->z),1-2*(this->x*this->x+this->z*this->z),  2*(this->y*this->z+this->w*this->x) ); }
	inline vec3<T> zdir() const { return vec3<T>(   2*(this->x*this->z+this->w*this->y),
												 2*(this->y*this->z-this->w*this->x),1-
												 2*(this->x*this->x+this->y*this->y) ); }
	inline mat3x3<T> getmatrix() const { return mat3x3<T>( xdir(), ydir(), zdir() ); }
	//operator float3x3() { return getmatrix(); }
	void Normalize();
};

template<class T> 
inline quaternion<T> quatfrommat(const mat3x3<T> &m)
{
	T magw =  m[0 ][ 0] + m[1 ][ 1] + m[2 ][ 2];
	T magxy;
	T magzw;
	vec3<T> pre;
	vec3<T> prexy;
	vec3<T> prezw;
	quaternion<T> postxy;
	quaternion<T> postzw;
	quaternion<T> post;
	int wvsz =  (magw  > m[2][2] ) ;
	magzw  = (wvsz) ? magw : m[2][2];
	prezw  = (wvsz) ? vec3<T>(1.0f,1.0f,1.0f)           : vec3<T>(-1.0f,-1.0f,1.0f) ;
	postzw = (wvsz) ? quaternion<T>(0.0f,0.0f,0.0f,1.0f): quaternion<T>(0.0f,0.0f,1.0f,0.0f);
	int xvsy = (m[0][0]>m[1][1]);
	magxy  = (xvsy) ? m[0][0] : m[1][1];
	prexy  = (xvsy) ? vec3<T>(1.0f,-1.0f,-1.0f)         : vec3<T>(-1.0f,1.0f,-1.0f) ;
	postxy = (xvsy) ? quaternion<T>(1.0f,0.0f,0.0f,0.0f): quaternion<T>(0.0f,1.0f,0.0f,0.0f);
	int zwvsxy = (magzw > magxy);
	pre  = (zwvsxy) ? prezw  : prexy ;
	post = (zwvsxy) ? postzw : postxy;

	T t = pre.x * m[0 ][ 0] + pre.y * m[1 ][ 1] + pre.z * m[2 ][ 2] + 1.0f;
	T s = 1/sqrt(t) * 0.5f;
	quaternion<T> qp;
	qp.x = ( pre.y * m[1][2] - pre.z * m[2][1] ) * s;
	qp.y = ( pre.z * m[2][0] - pre.x * m[0][2] ) * s;
	qp.z = ( pre.x * m[0][1] - pre.y * m[1][0] ) * s;
	qp.w = t * s ;
	return qp * post ;
}

typedef quaternion<float> Quaternion;

inline Quaternion QuatFromAxisAngle(const float3 &_v, float angle_radians ) 
{ 
	float3 v = normalize(_v)*sinf(angle_radians/2.0f); 
	return Quaternion(v.x,v.y,v.z,cosf(angle_radians/2.0f));
}

template<class T> inline quaternion<T>  Conjugate(const quaternion<T>  &q){return quaternion<T>(-q.x,-q.y,-q.z,q.w);}
template<class T> inline quaternion<T>  Inverse(const quaternion<T>  &q){return Conjugate(q);}
template<class T> inline quaternion<T>  normalize( const quaternion<T> & a ){return quaternion<T> (normalize((vec4<T>&)a));}
template<class T> inline quaternion<T>& operator*=(quaternion<T>& a, T s ){return (quaternion<T>&)((vec4<T>&)a *=s);}
template<class T> inline quaternion<T>  operator*( const quaternion<T>& a, float s ){return quaternion<T>((vec4<T>&)a*s);}
template<class T> inline quaternion<T>  operator+( const quaternion<T>& a, const quaternion<T>& b){return quaternion<T>((vec4<T>&)a+(vec4<T>&)b);}
template<class T> inline quaternion<T>  operator-( const quaternion<T>& a, const quaternion<T>& b){return quaternion<T>((vec4<T>&)a-(vec4<T>&)b);}
template<class T> inline quaternion<T>  operator-( const quaternion<T>& b){return quaternion<T>(-(vec4<T>&)b);}
template<class T> inline quaternion<T>  operator*( const quaternion<T>& a, const quaternion<T>& b)
{
	return quaternion<T>(
	  a.w*b.x + a.x*b.w + a.y*b.z - a.z*b.y,    //x
	  a.w*b.y - a.x*b.z + a.y*b.w + a.z*b.x,    //y
	  a.w*b.z + a.x*b.y - a.y*b.x + a.z*b.w,    //z
	  a.w*b.w - a.x*b.x - a.y*b.y - a.z*b.z );  //w
}


float3		rotate( const Quaternion& q, const float3& v );
//float3		operator*( const Quaternion& q, const float3& v );
//float3		operator*( const float3& v, const Quaternion& q );

Quaternion	slerp(const Quaternion &a, const Quaternion& b, float t );
Quaternion  Interpolate(const Quaternion &q0,const Quaternion &q1,float t); 
Quaternion  RotationArc(float3 v0, float3 v1 );  // returns quat q where q*v0*q^-1=v1
float4x4    MatrixFromQuatVec(const Quaternion &q, const float3 &v);

inline Quaternion QuatFromMat(const float3 &t, const float3 &b, const float3 &n)
{
	return normalize(quatfrommat<float>(float3x3(t,b,n)));
}


//---------------- Pose ------------------

class Pose
{
public:
	float3 position;
	Quaternion orientation;
	Pose(){}
	Pose(const float3 &p,const Quaternion &q):position(p),orientation(q){}
	Pose &pose(){return *this;}
	const Pose &pose() const {return *this;}
};

inline float3 operator*(const Pose &a,const float3 &v)
{
	return a.position + rotate(a.orientation,v);
}

inline Pose operator*(const Pose &a,const Pose &b)
{
	return Pose(a.position + rotate(a.orientation,b.position),a.orientation*b.orientation);
}

inline Pose Inverse(const Pose &a)
{
	Quaternion q = Inverse(a.orientation);
	return Pose(rotate(q,-a.position),q);
}

inline Pose slerp(const Pose &p0,const Pose &p1,float t)
{
	return Pose(p0.position * (1.0f-t) + p1.position * t,slerp(p0.orientation,p1.orientation,t));
}

inline float4x4 MatrixFromPose(const Pose &pose)
{
	return MatrixFromQuatVec(pose.orientation,pose.position);
}

//------ Euler Angle -----

Quaternion YawPitchRoll( float yaw, float pitch, float roll );
float Yaw( const Quaternion& q );
float Pitch( const Quaternion& q );
float Roll( const Quaternion &q );
float Yaw( const float3& v );
float Pitch( const float3& v );

//------- Plane ----------
class Plane : public float4
{
  public:
	float3&	normal(){ return xyz(); } 
	const float3&	normal() const { return xyz(); } 
	float&	dist(){return w;}   // distance below origin - the D from plane equasion Ax+By+Cz+D=0
	const float&	dist() const{return w;}   // distance below origin - the D from plane equasion Ax+By+Cz+D=0
	Plane(const float3 &n,float d):float4(n,d){}
	Plane(){dist()=0;}
	explicit Plane(const float4 &v):float4(v){}
};

Plane   Transform(const Plane &p, const float3 &translation, const Quaternion &rotation); 

inline  Plane PlaneFlip(const Plane &p){return Plane(-p.normal(),-p.dist());}
inline  int   operator==( const Plane &a, const Plane &b ) { return (a.normal()==b.normal() && a.dist()==b.dist()); }
inline  int   coplanar( const Plane &a, const Plane &b ) { return (a==b || a==PlaneFlip(b)); }

float3  PlaneLineIntersection(const Plane &plane, const float3 &p0, const float3 &p1);
float3  PlaneProject(const Plane &plane, const float3 &point);
float3  PlanesIntersection(const Plane &p0,const Plane &p1, const Plane &p2);
float3  PlanesIntersection(const Plane *planes,int planes_count,const float3 &seed=float3(0,0,0));

int     Clip(const Plane &p,const float3 *verts_in,int count,float* verts_out); // verts_out must be preallocated with sufficient size >= count+1 or more if concave
int     ClipPolyPoly(const float3 &normal,const float3 *clipper,int clipper_count,const float3 *verts_in, int in_count,float3 *scratch);  //scratch must be preallocated


//--------- Utility Functions ------

float3  PlaneLineIntersection(const float3 &normal,const float dist, const float3 &p0, const float3 &p1);
float3  LineProject(const float3 &p0, const float3 &p1, const float3 &a);  // projects a onto infinite line p0p1
float   LineProjectTime(const float3 &p0, const float3 &p1, const float3 &a);  
int     BoxInside(const float3 &p,const float3 &bmin, const float3 &bmax) ;
int     BoxIntersect(const float3 &v0, const float3 &v1, const float3 &bmin, const float3 &bmax, float3 *impact);
float   DistanceBetweenLines(const float3 &ustart, const float3 &udir, const float3 &vstart, const float3 &vdir, float3 *upoint=NULL, float3 *vpoint=NULL);
float3  TriNormal(const float3 &v0, const float3 &v1, const float3 &v2);
float3  NormalOf(const float3 *vert, const int n);
Quaternion VirtualTrackBall(const float3 &cop, const float3 &cor, const float3 &dir0, const float3 &dir1);
int     Clip(const float3 &plane_normal,float plane_dist,const float3 *verts_in,int count,float* verts_out); // verts_out must be preallocated with sufficient size >= count+1 or more if concave
int     ClipPolyPoly(const float3 &normal,const float3 *clipper,int clipper_count,const float3 *verts_in, int in_count,float3 *scratch);  //scratch must be preallocated
float3  Diagonal(const float3x3 &M);
Quaternion Diagonalizer(const float3x3 &A);
float3  Orth(const float3& v);
int     SolveQuadratic(float a,float b,float c,float *ta,float *tb);  // if true returns roots ta,tb where ta<=tb
int     HitCheckPoly(const float3 *vert,const int n,const float3 &v0, const float3 &v1, float3 *impact=NULL, float3 *normal=NULL);
int     HitCheckRaySphere(const float3& sphereposition,float radius, const float3& _v0, const float3& _v1, float3 *impact,float3 *normal);
int     HitCheckRayCylinder(const float3 &p0,const float3 &p1,float radius,const float3& _v0,const float3& _v1, float3 *impact,float3 *normal);
int     HitCheckSweptSphereTri(const float3 &p0,const float3 &p1,const float3 &p2,float radius, const float3& v0,const float3& _v1, float3 *impact,float3 *normal);
void    BoxLimits(const float3 *verts,int verts_count, float3 &bmin_out,float3 &bmax_out);
void    BoxLimits(const float4 *verts,int verts_count, float3 &bmin_out,float3 &bmax_out);


template<class T>
inline int maxdir(const T *p,int count,const T &dir)
{
	assert(count);
	int m=0;
	for(int i=1;i<count;i++)
	{
		if(dot(p[i],dir)>dot(p[m],dir)) m=i;
	}
	return m;
}

float3 CenterOfMass(const float3 *vertices, const int3 *tris, const int count) ;
float3x3 Inertia(const float3 *vertices, const int3 *tris, const int count, const float3& com=float3(0,0,0)) ;
float Volume(const float3 *vertices, const int3 *tris, const int count) ;
int calchull(float3 *verts,int verts_count, int3 *&tris_out, int &tris_count,int vlimit); // computes convex hull see hull.cpp

#endif // VEC_MATH_H