1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
|
//
//
// Typical 3d vector math code.
// By S Melax 1998-2008
//
//
#ifndef SM_VEC_MATH_H
#define SM_VEC_MATH_H
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <xmmintrin.h>
#define M_PIf (3.1415926535897932384626433832795f)
inline float DegToRad(float angle_degrees) { return angle_degrees * M_PIf / 180.0f; } // returns Radians.
inline float RadToDeg(float angle_radians) { return angle_radians * 180.0f / M_PIf; } // returns Degrees.
#define OFFSET(Class,Member) (((char*) (&(((Class*)NULL)-> Member )))- ((char*)NULL))
int argmin(const float a[],int n);
int argmax(const float a[],int n);
float squared(float a);
float clamp(float a,const float minval=0.0f, const float maxval=1.0f);
int clamp(int a,const int minval,const int maxval) ;
float Round(float a,float precision);
float Interpolate(const float &f0,const float &f1,float alpha) ;
template <class T>
void Swap(T &a,T &b)
{
T tmp = a;
a=b;
b=tmp;
}
template <class T>
T Max(const T &a,const T &b)
{
return (a>b)?a:b;
}
template <class T>
T Min(const T &a,const T &b)
{
return (a<b)?a:b;
}
//for template normalize functions:
inline float squareroot(float a){return sqrtf(a);}
inline double squareroot(double a){return sqrt(a); }
//----------------------------------
//-------- 2D --------
template<class T>
class vec2
{
public:
T x,y;
inline vec2(){x=0;y=0;}
inline vec2(const T &_x, const T &_y){x=_x;y=_y;}
inline T& operator[](int i) {return ((T*)this)[i];}
inline const T& operator[](int i) const {return ((T*)this)[i];}
};
typedef vec2<int> int2;
typedef vec2<float> float2;
template<class T> inline int operator ==(const vec2<T> &a,const vec2<T> &b) {return (a.x==b.x && a.y==b.y);}
template<class T> inline vec2<T> operator-( const vec2<T>& a, const vec2<T>& b ){return vec2<T>(a.x-b.x,a.y-b.y);}
template<class T> inline vec2<T> operator+( const vec2<T>& a, const vec2<T>& b ){return float2(a.x+b.x,a.y+b.y);}
//--------- 3D ---------
template<class T>
class vec3
{
public:
T x,y,z;
inline vec3(){x=0;y=0;z=0;};
inline vec3(const T &_x,const T &_y,const T &_z){x=_x;y=_y;z=_z;};
inline T& operator[](int i) {return ((T*)this)[i];}
inline const T& operator[](int i) const {return ((T*)this)[i];}
};
typedef vec3<int> int3;
typedef vec3<short> short3;
typedef vec3<float> float3;
// due to ambiguity there is no overloaded operators for v3*v3 use dot,cross,outerprod,cmul
template<class T> inline int operator==(const vec3<T> &a,const vec3<T> &b) {return (a.x==b.x && a.y==b.y && a.z==b.z);}
template<class T> inline int operator!=(const vec3<T> &a,const vec3<T> &b) {return !(a==b);}
template<class T> inline vec3<T> operator+(const vec3<T>& a, const vec3<T>& b ){return vec3<T>(a.x+b.x, a.y+b.y, a.z+b.z);}
template<class T> inline vec3<T> operator-(const vec3<T>& a, const vec3<T>& b ){return vec3<T>(a.x-b.x, a.y-b.y, a.z-b.z);}
template<class T> inline vec3<T> operator-(const vec3<T>& v){return vec3<T>(-v.x,-v.y,-v.z );}
template<class T> inline vec3<T> operator*(const vec3<T>& v, const T &s ){ return vec3<T>( v.x*s, v.y*s, v.z*s );}
template<class T> inline vec3<T> operator*(T s, const vec3<T>& v ){return v*s;}
template<class T> inline vec3<T> operator/(const vec3<T>& v, T s ){return vec3<T>( v.x/s, v.y/s, v.z/s );}
template<class T> inline T dot (const vec3<T>& a, const vec3<T>& b){return a.x*b.x + a.y*b.y + a.z*b.z;}
template<class T> inline vec3<T> cmul (const vec3<T>& a, const vec3<T>& b){return vec3<T>(a.x*b.x, a.y*b.y, a.z*b.z);}
template<class T> inline vec3<T> cross(const vec3<T>& a, const vec3<T>& b){return vec3<T>(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x);}
template<class T> inline T magnitude( const vec3<T>& v ){return squareroot(dot(v,v));}
template<class T> inline vec3<T> normalize( const vec3<T>& v ){return v/magnitude(v);}
template<class T> inline vec3<T>& operator+=(vec3<T>& a, const vec3<T>& b){a.x+=b.x;a.y+=b.y;a.z+=b.z;return a;}
template<class T> inline vec3<T>& operator-=(vec3<T>& a, const vec3<T>& b){a.x-=b.x;a.y-=b.y;a.z-=b.z;return a;}
template<class T> inline vec3<T>& operator*=(vec3<T>& v, T s){v.x*=s;v.y*=s;v.z*= s;return v;}
template<class T> inline vec3<T>& operator/=(vec3<T>& v, T s){v.x/=s;v.y/=s;v.z/=s;return v;}
float3 safenormalize(const float3 &v);
float3 vabs(const float3 &v);
float3 Interpolate(const float3 &v0,const float3 &v1,float alpha);
float3 Round(const float3& a,float precision);
template<class T> inline vec3<T>VectorMin(const vec3<T> &a,const vec3<T> &b) {return vec3<T>(Min(a.x,b.x),Min(a.y,b.y),Min(a.z,b.z));}
template<class T> inline vec3<T>VectorMax(const vec3<T> &a,const vec3<T> &b) {return vec3<T>(Max(a.x,b.x),Max(a.y,b.y),Max(a.z,b.z));}
int overlap(const float3 &bmina,const float3 &bmaxa,const float3 &bminb,const float3 &bmaxb);
template <class T>
class mat3x3
{
public:
vec3<T> x,y,z; // the 3 rows of the Matrix
inline mat3x3(){}
inline mat3x3(const T &xx,const T &xy,const T &xz,const T &yx,const T &yy,const T &yz,const T &zx,const T &zy,const T &zz):x(xx,xy,xz),y(yx,yy,yz),z(zx,zy,zz){}
inline mat3x3(const vec3<T> &_x,const vec3<T> &_y,const vec3<T> &_z):x(_x),y(_y),z(_z){}
inline vec3<T>& operator[](int i) {return (&x)[i];}
inline const vec3<T>& operator[](int i) const {return (&x)[i];}
inline T& operator()(int r, int c) {return ((&x)[r])[c];}
inline const T& operator()(int r, int c) const {return ((&x)[r])[c];}
};
typedef mat3x3<float> float3x3;
float3x3 Transpose( const float3x3& m );
template<class T> vec3<T> operator*( const vec3<T>& v , const mat3x3<T>& m )
{
return vec3<T>((m.x.x*v.x + m.y.x*v.y + m.z.x*v.z),
(m.x.y*v.x + m.y.y*v.y + m.z.y*v.z),
(m.x.z*v.x + m.y.z*v.y + m.z.z*v.z));
}
float3 operator*( const float3x3& m , const float3& v );
float3x3 operator*( const float3x3& m , const float& s );
float3x3 operator*( const float3x3& ma, const float3x3& mb );
float3x3 operator/( const float3x3& a, const float& s ) ;
float3x3 operator+( const float3x3& a, const float3x3& b );
float3x3 operator-( const float3x3& a, const float3x3& b );
float3x3 &operator+=( float3x3& a, const float3x3& b );
float3x3 &operator-=( float3x3& a, const float3x3& b );
float3x3 &operator*=( float3x3& a, const float& s );
float Determinant(const float3x3& m );
float3x3 Inverse(const float3x3& a); // its just 3x3 so we simply do that cofactor method
float3x3 outerprod(const float3& a,const float3& b);
//-------- 4D Math --------
template<class T>
class vec4
{
public:
T x,y,z,w;
inline vec4(){x=0;y=0;z=0;w=0;};
inline vec4(const T &_x, const T &_y, const T &_z, const T &_w){x=_x;y=_y;z=_z;w=_w;}
inline vec4(const vec3<T> &v,const T &_w){x=v.x;y=v.y;z=v.z;w=_w;}
//operator float *() { return &x;};
T& operator[](int i) {return ((T*)this)[i];}
const T& operator[](int i) const {return ((T*)this)[i];}
inline const vec3<T>& xyz() const { return *((vec3<T>*)this);}
inline vec3<T>& xyz() { return *((vec3<T>*)this);}
};
typedef vec4<float> float4;
typedef vec4<int> int4;
typedef vec4<unsigned char> byte4;
template<class T> inline int operator==(const vec4<T> &a,const vec4<T> &b) {return (a.x==b.x && a.y==b.y && a.z==b.z && a.w==b.w);}
template<class T> inline int operator!=(const vec4<T> &a,const vec4<T> &b) {return !(a==b);}
template<class T> inline vec4<T> operator+(const vec4<T>& a, const vec4<T>& b ){return vec4<T>(a.x+b.x,a.y+b.y,a.z+b.z,a.w+b.w);}
template<class T> inline vec4<T> operator-(const vec4<T>& a, const vec4<T>& b ){return vec4<T>(a.x-b.x,a.y-b.y,a.z-b.z,a.w-b.w);}
template<class T> inline vec4<T> operator-(const vec4<T>& v){return vec4<T>(-v.x,-v.y,-v.z,-v.w);}
template<class T> inline vec4<T> operator*(const vec4<T>& v, const T &s ){ return vec4<T>( v.x*s, v.y*s, v.z*s,v.w*s);}
template<class T> inline vec4<T> operator*(T s, const vec4<T>& v ){return v*s;}
template<class T> inline vec4<T> operator/(const vec4<T>& v, T s ){return vec4<T>( v.x/s, v.y/s, v.z/s,v.w/s );}
template<class T> inline T dot(const vec4<T>& a, const vec4<T>& b ){return a.x*b.x + a.y*b.y + a.z*b.z+a.w*b.w;}
template<class T> inline vec4<T> cmul(const vec4<T> &a, const vec4<T> &b) {return vec4<T>(a.x*b.x, a.y*b.y, a.z*b.z,a.w*b.w);}
template<class T> inline vec4<T>& operator+=(vec4<T>& a, const vec4<T>& b ){a.x+=b.x;a.y+=b.y;a.z+=b.z;a.w+=b.w;return a;}
template<class T> inline vec4<T>& operator-=(vec4<T>& a, const vec4<T>& b ){a.x-=b.x;a.y-=b.y;a.z-=b.z;a.w-=b.w;return a;}
template<class T> inline vec4<T>& operator*=(vec4<T>& v, T s){v.x*=s;v.y*=s;v.z*=s;v.w*=s;return v;}
template<class T> inline vec4<T>& operator/=(vec4<T>& v, T s){v.x/=s;v.y/=s;v.z/=s;v.w/=s;return v;}
template<class T> inline T magnitude( const vec4<T>& v ){return squareroot(dot(v,v));}
template<class T> inline vec4<T> normalize( const vec4<T>& v ){return v/magnitude(v);}
struct D3DXMATRIX;
template<class T>
class mat4x4
{
public:
vec4<T> x,y,z,w; // the 4 rows
inline mat4x4(){}
inline mat4x4(const vec4<T> &_x, const vec4<T> &_y, const vec4<T> &_z, const vec4<T> &_w):x(_x),y(_y),z(_z),w(_w){}
inline mat4x4(const T& m00, const T& m01, const T& m02, const T& m03,
const T& m10, const T& m11, const T& m12, const T& m13,
const T& m20, const T& m21, const T& m22, const T& m23,
const T& m30, const T& m31, const T& m32, const T& m33 )
:x(m00,m01,m02,m03),y(m10,m11,m12,m13),z(m20,m21,m22,m23),w(m30,m31,m32,m33){}
inline vec4<T>& operator[](int i) {assert(i>=0&&i<4);return (&x)[i];}
inline const vec4<T>& operator[](int i) const {assert(i>=0&&i<4);return (&x)[i];}
inline T& operator()(int r, int c) {assert(r>=0&&r<4&&c>=0&&c<4);return ((&x)[r])[c];}
inline const T& operator()(int r, int c) const {assert(r>=0&&r<4&&c>=0&&c<4);return ((&x)[r])[c];}
inline operator T* () {return &x.x;}
inline operator const T* () const {return &x.x;}
operator struct D3DXMATRIX* () { return (struct D3DXMATRIX*) this;}
operator const struct D3DXMATRIX* () const { return (struct D3DXMATRIX*) this;}
};
typedef mat4x4<float> float4x4;
float4x4 operator*( const float4x4& a, const float4x4& b );
float4 operator*( const float4& v, const float4x4& m );
float4x4 Inverse(const float4x4 &m);
float4x4 MatrixRigidInverse(const float4x4 &m);
float4x4 MatrixTranspose(const float4x4 &m);
float4x4 MatrixPerspectiveFov(float fovy, float Aspect, float zn, float zf );
float4x4 MatrixTranslation(const float3 &t);
float4x4 MatrixRotationZ(const float angle_radians);
float4x4 MatrixLookAt(const float3& eye, const float3& at, const float3& up);
int operator==( const float4x4 &a, const float4x4 &b );
//-------- Quaternion ------------
template<class T>
class quaternion : public vec4<T>
{
public:
inline quaternion() { this->x = this->y = this->z = 0.0f; this->w = 1.0f; }
inline quaternion(const T &_x, const T &_y, const T &_z, const T &_w){this->x=_x;this->y=_y;this->z=_z;this->w=_w;}
inline explicit quaternion(const vec4<T> &v):vec4<T>(v){}
T angle() const { return acosf(this->w)*2.0f; }
vec3<T> axis() const { vec3<T> a(this->x,this->y,this->z); if(fabsf(angle())<0.0000001f) return vec3<T>(1,0,0); return a*(1/sinf(angle()/2.0f)); }
inline vec3<T> xdir() const { return vec3<T>( 1-2*(this->y*this->y+this->z*this->z), 2*(this->x*this->y+this->w*this->z),
2*(this->x*this->z-this->w*this->y) ); }
inline vec3<T> ydir() const { return vec3<T>( 2*(this->x*this->y-this->w*this->z),1-2*(this->x*this->x+this->z*this->z), 2*(this->y*this->z+this->w*this->x) ); }
inline vec3<T> zdir() const { return vec3<T>( 2*(this->x*this->z+this->w*this->y),
2*(this->y*this->z-this->w*this->x),1-
2*(this->x*this->x+this->y*this->y) ); }
inline mat3x3<T> getmatrix() const { return mat3x3<T>( xdir(), ydir(), zdir() ); }
//operator float3x3() { return getmatrix(); }
void Normalize();
};
template<class T>
inline quaternion<T> quatfrommat(const mat3x3<T> &m)
{
T magw = m[0 ][ 0] + m[1 ][ 1] + m[2 ][ 2];
T magxy;
T magzw;
vec3<T> pre;
vec3<T> prexy;
vec3<T> prezw;
quaternion<T> postxy;
quaternion<T> postzw;
quaternion<T> post;
int wvsz = (magw > m[2][2] ) ;
magzw = (wvsz) ? magw : m[2][2];
prezw = (wvsz) ? vec3<T>(1.0f,1.0f,1.0f) : vec3<T>(-1.0f,-1.0f,1.0f) ;
postzw = (wvsz) ? quaternion<T>(0.0f,0.0f,0.0f,1.0f): quaternion<T>(0.0f,0.0f,1.0f,0.0f);
int xvsy = (m[0][0]>m[1][1]);
magxy = (xvsy) ? m[0][0] : m[1][1];
prexy = (xvsy) ? vec3<T>(1.0f,-1.0f,-1.0f) : vec3<T>(-1.0f,1.0f,-1.0f) ;
postxy = (xvsy) ? quaternion<T>(1.0f,0.0f,0.0f,0.0f): quaternion<T>(0.0f,1.0f,0.0f,0.0f);
int zwvsxy = (magzw > magxy);
pre = (zwvsxy) ? prezw : prexy ;
post = (zwvsxy) ? postzw : postxy;
T t = pre.x * m[0 ][ 0] + pre.y * m[1 ][ 1] + pre.z * m[2 ][ 2] + 1.0f;
T s = 1/sqrt(t) * 0.5f;
quaternion<T> qp;
qp.x = ( pre.y * m[1][2] - pre.z * m[2][1] ) * s;
qp.y = ( pre.z * m[2][0] - pre.x * m[0][2] ) * s;
qp.z = ( pre.x * m[0][1] - pre.y * m[1][0] ) * s;
qp.w = t * s ;
return qp * post ;
}
typedef quaternion<float> Quaternion;
inline Quaternion QuatFromAxisAngle(const float3 &_v, float angle_radians )
{
float3 v = normalize(_v)*sinf(angle_radians/2.0f);
return Quaternion(v.x,v.y,v.z,cosf(angle_radians/2.0f));
}
template<class T> inline quaternion<T> Conjugate(const quaternion<T> &q){return quaternion<T>(-q.x,-q.y,-q.z,q.w);}
template<class T> inline quaternion<T> Inverse(const quaternion<T> &q){return Conjugate(q);}
template<class T> inline quaternion<T> normalize( const quaternion<T> & a ){return quaternion<T> (normalize((vec4<T>&)a));}
template<class T> inline quaternion<T>& operator*=(quaternion<T>& a, T s ){return (quaternion<T>&)((vec4<T>&)a *=s);}
template<class T> inline quaternion<T> operator*( const quaternion<T>& a, float s ){return quaternion<T>((vec4<T>&)a*s);}
template<class T> inline quaternion<T> operator+( const quaternion<T>& a, const quaternion<T>& b){return quaternion<T>((vec4<T>&)a+(vec4<T>&)b);}
template<class T> inline quaternion<T> operator-( const quaternion<T>& a, const quaternion<T>& b){return quaternion<T>((vec4<T>&)a-(vec4<T>&)b);}
template<class T> inline quaternion<T> operator-( const quaternion<T>& b){return quaternion<T>(-(vec4<T>&)b);}
template<class T> inline quaternion<T> operator*( const quaternion<T>& a, const quaternion<T>& b)
{
return quaternion<T>(
a.w*b.x + a.x*b.w + a.y*b.z - a.z*b.y, //x
a.w*b.y - a.x*b.z + a.y*b.w + a.z*b.x, //y
a.w*b.z + a.x*b.y - a.y*b.x + a.z*b.w, //z
a.w*b.w - a.x*b.x - a.y*b.y - a.z*b.z ); //w
}
float3 rotate( const Quaternion& q, const float3& v );
//float3 operator*( const Quaternion& q, const float3& v );
//float3 operator*( const float3& v, const Quaternion& q );
Quaternion slerp(const Quaternion &a, const Quaternion& b, float t );
Quaternion Interpolate(const Quaternion &q0,const Quaternion &q1,float t);
Quaternion RotationArc(float3 v0, float3 v1 ); // returns quat q where q*v0*q^-1=v1
float4x4 MatrixFromQuatVec(const Quaternion &q, const float3 &v);
inline Quaternion QuatFromMat(const float3 &t, const float3 &b, const float3 &n)
{
return normalize(quatfrommat<float>(float3x3(t,b,n)));
}
//---------------- Pose ------------------
class Pose
{
public:
float3 position;
Quaternion orientation;
Pose(){}
Pose(const float3 &p,const Quaternion &q):position(p),orientation(q){}
Pose &pose(){return *this;}
const Pose &pose() const {return *this;}
};
inline float3 operator*(const Pose &a,const float3 &v)
{
return a.position + rotate(a.orientation,v);
}
inline Pose operator*(const Pose &a,const Pose &b)
{
return Pose(a.position + rotate(a.orientation,b.position),a.orientation*b.orientation);
}
inline Pose Inverse(const Pose &a)
{
Quaternion q = Inverse(a.orientation);
return Pose(rotate(q,-a.position),q);
}
inline Pose slerp(const Pose &p0,const Pose &p1,float t)
{
return Pose(p0.position * (1.0f-t) + p1.position * t,slerp(p0.orientation,p1.orientation,t));
}
inline float4x4 MatrixFromPose(const Pose &pose)
{
return MatrixFromQuatVec(pose.orientation,pose.position);
}
//------ Euler Angle -----
Quaternion YawPitchRoll( float yaw, float pitch, float roll );
float Yaw( const Quaternion& q );
float Pitch( const Quaternion& q );
float Roll( const Quaternion &q );
float Yaw( const float3& v );
float Pitch( const float3& v );
//------- Plane ----------
class Plane : public float4
{
public:
float3& normal(){ return xyz(); }
const float3& normal() const { return xyz(); }
float& dist(){return w;} // distance below origin - the D from plane equasion Ax+By+Cz+D=0
const float& dist() const{return w;} // distance below origin - the D from plane equasion Ax+By+Cz+D=0
Plane(const float3 &n,float d):float4(n,d){}
Plane(){dist()=0;}
explicit Plane(const float4 &v):float4(v){}
};
Plane Transform(const Plane &p, const float3 &translation, const Quaternion &rotation);
inline Plane PlaneFlip(const Plane &p){return Plane(-p.normal(),-p.dist());}
inline int operator==( const Plane &a, const Plane &b ) { return (a.normal()==b.normal() && a.dist()==b.dist()); }
inline int coplanar( const Plane &a, const Plane &b ) { return (a==b || a==PlaneFlip(b)); }
float3 PlaneLineIntersection(const Plane &plane, const float3 &p0, const float3 &p1);
float3 PlaneProject(const Plane &plane, const float3 &point);
float3 PlanesIntersection(const Plane &p0,const Plane &p1, const Plane &p2);
float3 PlanesIntersection(const Plane *planes,int planes_count,const float3 &seed=float3(0,0,0));
int Clip(const Plane &p,const float3 *verts_in,int count,float* verts_out); // verts_out must be preallocated with sufficient size >= count+1 or more if concave
int ClipPolyPoly(const float3 &normal,const float3 *clipper,int clipper_count,const float3 *verts_in, int in_count,float3 *scratch); //scratch must be preallocated
//--------- Utility Functions ------
float3 PlaneLineIntersection(const float3 &normal,const float dist, const float3 &p0, const float3 &p1);
float3 LineProject(const float3 &p0, const float3 &p1, const float3 &a); // projects a onto infinite line p0p1
float LineProjectTime(const float3 &p0, const float3 &p1, const float3 &a);
int BoxInside(const float3 &p,const float3 &bmin, const float3 &bmax) ;
int BoxIntersect(const float3 &v0, const float3 &v1, const float3 &bmin, const float3 &bmax, float3 *impact);
float DistanceBetweenLines(const float3 &ustart, const float3 &udir, const float3 &vstart, const float3 &vdir, float3 *upoint=NULL, float3 *vpoint=NULL);
float3 TriNormal(const float3 &v0, const float3 &v1, const float3 &v2);
float3 NormalOf(const float3 *vert, const int n);
Quaternion VirtualTrackBall(const float3 &cop, const float3 &cor, const float3 &dir0, const float3 &dir1);
int Clip(const float3 &plane_normal,float plane_dist,const float3 *verts_in,int count,float* verts_out); // verts_out must be preallocated with sufficient size >= count+1 or more if concave
int ClipPolyPoly(const float3 &normal,const float3 *clipper,int clipper_count,const float3 *verts_in, int in_count,float3 *scratch); //scratch must be preallocated
float3 Diagonal(const float3x3 &M);
Quaternion Diagonalizer(const float3x3 &A);
float3 Orth(const float3& v);
int SolveQuadratic(float a,float b,float c,float *ta,float *tb); // if true returns roots ta,tb where ta<=tb
int HitCheckPoly(const float3 *vert,const int n,const float3 &v0, const float3 &v1, float3 *impact=NULL, float3 *normal=NULL);
int HitCheckRaySphere(const float3& sphereposition,float radius, const float3& _v0, const float3& _v1, float3 *impact,float3 *normal);
int HitCheckRayCylinder(const float3 &p0,const float3 &p1,float radius,const float3& _v0,const float3& _v1, float3 *impact,float3 *normal);
int HitCheckSweptSphereTri(const float3 &p0,const float3 &p1,const float3 &p2,float radius, const float3& v0,const float3& _v1, float3 *impact,float3 *normal);
void BoxLimits(const float3 *verts,int verts_count, float3 &bmin_out,float3 &bmax_out);
void BoxLimits(const float4 *verts,int verts_count, float3 &bmin_out,float3 &bmax_out);
template<class T>
inline int maxdir(const T *p,int count,const T &dir)
{
assert(count);
int m=0;
for(int i=1;i<count;i++)
{
if(dot(p[i],dir)>dot(p[m],dir)) m=i;
}
return m;
}
float3 CenterOfMass(const float3 *vertices, const int3 *tris, const int count) ;
float3x3 Inertia(const float3 *vertices, const int3 *tris, const int count, const float3& com=float3(0,0,0)) ;
float Volume(const float3 *vertices, const int3 *tris, const int count) ;
int calchull(float3 *verts,int verts_count, int3 *&tris_out, int &tris_count,int vlimit); // computes convex hull see hull.cpp
#endif // VEC_MATH_H
|