1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
#include "RaytracerSetup.h"
#include "../CommonInterfaces/CommonGraphicsAppInterface.h"
#include "Bullet3Common/b3Quaternion.h"
#include "Bullet3Common/b3AlignedObjectArray.h"
#include "../CommonInterfaces/CommonRenderInterface.h"
#include "../CommonInterfaces/Common2dCanvasInterface.h"
//#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
//#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
//#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
#include "../CommonInterfaces/CommonExampleInterface.h"
#include "LinearMath/btAlignedObjectArray.h"
#include "btBulletCollisionCommon.h"
#include "../CommonInterfaces/CommonGUIHelperInterface.h"
struct RaytracerPhysicsSetup : public CommonExampleInterface
{
struct CommonGraphicsApp* m_app;
struct RaytracerInternalData* m_internalData;
RaytracerPhysicsSetup(struct CommonGraphicsApp* app);
virtual ~RaytracerPhysicsSetup();
virtual void initPhysics();
virtual void exitPhysics();
virtual void stepSimulation(float deltaTime);
virtual void physicsDebugDraw(int debugFlags);
virtual void syncPhysicsToGraphics(struct GraphicsPhysicsBridge& gfxBridge);
///worldRaytest performs a ray versus all objects in a collision world, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool worldRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint);
///singleObjectRaytest performs a ray versus one collision shape, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool singleObjectRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint);
///lowlevelRaytest performs a ray versus convex shape, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool lowlevelRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint);
virtual bool mouseMoveCallback(float x,float y);
virtual bool mouseButtonCallback(int button, int state, float x, float y);
virtual bool keyboardCallback(int key, int state);
virtual void renderScene()
{
}
};
struct RaytracerInternalData
{
int m_canvasIndex;
struct Common2dCanvasInterface* m_canvas;
int m_width;
int m_height;
btAlignedObjectArray<btConvexShape*> m_shapePtr;
btAlignedObjectArray<btTransform> m_transforms;
btVoronoiSimplexSolver m_simplexSolver;
btScalar m_pitch;
btScalar m_roll;
btScalar m_yaw;
RaytracerInternalData()
:m_canvasIndex(-1),
m_canvas(0),
m_roll(0),
m_pitch(0),
m_yaw(0),
#ifdef _DEBUG
m_width(64),
m_height(64)
#else
m_width(128),
m_height(128)
#endif
{
btConeShape* cone = new btConeShape(1,1);
btSphereShape* sphere = new btSphereShape(1);
btBoxShape* box = new btBoxShape (btVector3(1,1,1));
m_shapePtr.push_back(cone);
m_shapePtr.push_back(sphere);
m_shapePtr.push_back(box);
updateTransforms();
}
void updateTransforms()
{
int numObjects = m_shapePtr.size();
m_transforms.resize(numObjects);
for (int i=0;i<numObjects;i++)
{
m_transforms[i].setIdentity();
btVector3 pos(0.f,0.f,-(2.5* numObjects * 0.5)+i*2.5f);
m_transforms[i].setIdentity();
m_transforms[i].setOrigin( pos );
btQuaternion orn;
if (i < 2)
{
orn.setEuler(m_yaw,m_pitch,m_roll);
m_transforms[i].setRotation(orn);
}
}
m_pitch += 0.005f;
m_yaw += 0.01f;
}
};
RaytracerPhysicsSetup::RaytracerPhysicsSetup(struct CommonGraphicsApp* app)
{
m_app = app;
m_internalData = new RaytracerInternalData;
}
RaytracerPhysicsSetup::~RaytracerPhysicsSetup()
{
delete m_internalData;
}
void RaytracerPhysicsSetup::initPhysics()
{
//request a visual bitma/texture we can render to
m_internalData->m_canvas = m_app->m_2dCanvasInterface;
if (m_internalData->m_canvas)
{
m_internalData->m_canvasIndex = m_internalData->m_canvas->createCanvas("raytracer",m_internalData->m_width,m_internalData->m_height);
for (int i=0;i<m_internalData->m_width;i++)
{
for (int j=0;j<m_internalData->m_height;j++)
{
unsigned char red=255;
unsigned char green=255;
unsigned char blue=255;
unsigned char alpha=255;
m_internalData->m_canvas->setPixel(m_internalData->m_canvasIndex,i,j,red,green,blue,alpha);
}
}
m_internalData->m_canvas->refreshImageData(m_internalData->m_canvasIndex);
//int bitmapId = gfxBridge.createRenderBitmap(width,height);
}
}
///worldRaytest performs a ray versus all objects in a collision world, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool RaytracerPhysicsSetup::worldRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint)
{
return false;
}
///singleObjectRaytest performs a ray versus one collision shape, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool RaytracerPhysicsSetup::singleObjectRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint)
{
return false;
}
///lowlevelRaytest performs a ray versus convex shape, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool RaytracerPhysicsSetup::lowlevelRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint)
{
btScalar closestHitResults = 1.f;
bool hasHit = false;
btConvexCast::CastResult rayResult;
btSphereShape pointShape(0.0f);
btTransform rayFromTrans;
btTransform rayToTrans;
rayFromTrans.setIdentity();
rayFromTrans.setOrigin(rayFrom);
rayToTrans.setIdentity();
rayToTrans.setOrigin(rayTo);
int numObjects = m_internalData->m_shapePtr.size();
for (int s=0;s<numObjects;s++)
{
//do some culling, ray versus aabb
btVector3 aabbMin,aabbMax;
m_internalData->m_shapePtr[s]->getAabb( m_internalData->m_transforms[s],aabbMin,aabbMax);
btScalar hitLambda = 1.f;
btVector3 hitNormal;
btCollisionObject tmpObj;
tmpObj.setWorldTransform( m_internalData->m_transforms[s]);
if (btRayAabb(rayFrom,rayTo,aabbMin,aabbMax,hitLambda,hitNormal))
{
//reset previous result
//choose the continuous collision detection method
btSubsimplexConvexCast convexCaster(&pointShape, m_internalData->m_shapePtr[s],&m_internalData->m_simplexSolver);
//btGjkConvexCast convexCaster(&pointShape,shapePtr[s],&simplexSolver);
//btContinuousConvexCollision convexCaster(&pointShape,shapePtr[s],&simplexSolver,0);
if (convexCaster.calcTimeOfImpact(rayFromTrans,rayToTrans, m_internalData->m_transforms[s], m_internalData->m_transforms[s],rayResult))
{
if (rayResult.m_fraction < closestHitResults)
{
closestHitResults = rayResult.m_fraction;
worldNormal = m_internalData->m_transforms[s].getBasis() *rayResult.m_normal;
worldNormal.normalize();
hasHit = true;
}
}
}
}
return hasHit;
}
void RaytracerPhysicsSetup::exitPhysics()
{
if (m_internalData->m_canvas && m_internalData->m_canvasIndex>=0)
{
m_internalData->m_canvas->destroyCanvas(m_internalData->m_canvasIndex);
}
}
void RaytracerPhysicsSetup::stepSimulation(float deltaTime)
{
m_internalData->updateTransforms();
float top = 1.f;
float bottom = -1.f;
float nearPlane = 1.f;
float tanFov = (top-bottom)*0.5f / nearPlane;
float fov = 2.0 * atanf (tanFov);
btVector3 cameraPosition(5,0,0);
btVector3 cameraTargetPosition(0,0,0);
btVector3 rayFrom = cameraPosition;
btVector3 rayForward = cameraTargetPosition-cameraPosition;
rayForward.normalize();
float farPlane = 600.f;
rayForward*= farPlane;
btVector3 rightOffset;
btVector3 vertical(0.f,1.f,0.f);
btVector3 hor;
hor = rayForward.cross(vertical);
hor.normalize();
vertical = hor.cross(rayForward);
vertical.normalize();
float tanfov = tanf(0.5f*fov);
hor *= 2.f * farPlane * tanfov;
vertical *= 2.f * farPlane * tanfov;
btVector3 rayToCenter = rayFrom + rayForward;
btVector3 dHor = hor * 1.f/float(m_internalData->m_width);
btVector3 dVert = vertical * 1.f/float(m_internalData->m_height);
int mode = 0;
int x,y;
for (x=0;x<m_internalData->m_width;x++)
{
for (int y=0;y<m_internalData->m_height;y++)
{
btVector4 rgba(0,0,0,0);
btVector3 rayTo = rayToCenter - 0.5f * hor + 0.5f * vertical;
rayTo += x * dHor;
rayTo -= y * dVert;
btVector3 worldNormal(0,0,0);
btVector3 worldPoint(0,0,0);
bool hasHit = false;
int mode = 0;
switch (mode)
{
case 0:
hasHit = lowlevelRaytest(rayFrom,rayTo,worldNormal,worldPoint);
break;
case 1:
hasHit = singleObjectRaytest(rayFrom,rayTo,worldNormal,worldPoint);
break;
case 2:
hasHit = worldRaytest(rayFrom,rayTo,worldNormal,worldPoint);
break;
default:
{
}
}
if (hasHit)
{
float lightVec0 = worldNormal.dot(btVector3(0,-1,-1));//0.4f,-1.f,-0.4f));
float lightVec1= worldNormal.dot(btVector3(-1,0,-1));//-0.4f,-1.f,-0.4f));
rgba = btVector4(lightVec0,lightVec1,0,1.f);
rgba.setMin(btVector3(1,1,1));
rgba.setMax(btVector3(0.2,0.2,0.2));
rgba[3] = 1.f;
unsigned char red = rgba[0] * 255;
unsigned char green = rgba[1] * 255;
unsigned char blue = rgba[2] * 255;
unsigned char alpha=255;
m_internalData->m_canvas->setPixel(m_internalData->m_canvasIndex,x,y,red,green,blue,alpha);
} else
{
// btVector4 rgba = raytracePicture->getPixel(x,y);
}
if (!rgba.length2())
{
m_internalData->m_canvas->setPixel(m_internalData->m_canvasIndex,x,y,255,0,0,255);
}
}
}
m_internalData->m_canvas->refreshImageData(m_internalData->m_canvasIndex);
}
void RaytracerPhysicsSetup::physicsDebugDraw(int debugDrawFlags)
{
}
bool RaytracerPhysicsSetup::mouseMoveCallback(float x,float y)
{
return false;
}
bool RaytracerPhysicsSetup::mouseButtonCallback(int button, int state, float x, float y)
{
return false;
}
bool RaytracerPhysicsSetup::keyboardCallback(int key, int state)
{
return false;
}
void RaytracerPhysicsSetup::syncPhysicsToGraphics(GraphicsPhysicsBridge& gfxBridge)
{
}
CommonExampleInterface* RayTracerCreateFunc(struct CommonExampleOptions& options)
{
return new RaytracerPhysicsSetup(options.m_guiHelper->getAppInterface());
}
|