File: test_invdyn_jacobian.cpp

package info (click to toggle)
bullet 2.87%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 14,272 kB
  • sloc: cpp: 204,241; ansic: 12,100; lisp: 12,017; python: 593; makefile: 136; sh: 8
file content (326 lines) | stat: -rw-r--r-- 10,935 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
// Test of kinematic consistency: check if finite differences of velocities, accelerations
// match positions

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>

#include <gtest/gtest.h>

#include "Bullet3Common/b3Random.h"

#include "CloneTreeCreator.hpp"
#include "CoilCreator.hpp"
#include "DillCreator.hpp"
#include "RandomTreeCreator.hpp"
#include "BulletInverseDynamics/MultiBodyTree.hpp"
#include "MultiBodyTreeDebugGraph.hpp"

using namespace btInverseDynamics;

#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
// minimal smart pointer to make this work for c++2003
template <typename T>
class ptr {
    ptr();
    ptr(const ptr&);
public:
    ptr(T* p) : m_p(p) {};
    ~ptr() { delete m_p; }
    T& operator*() { return *m_p; }
    T* operator->() { return m_p; }
    T*get() {return m_p;}
    const T*get() const {return m_p;}
    friend bool operator==(const ptr<T>& lhs, const ptr<T>& rhs) { return rhs.m_p == lhs.m_p; }
    friend bool operator!=(const ptr<T>& lhs, const ptr<T>& rhs) { return !(rhs.m_p == lhs.m_p);
}

private:
    T* m_p;
};

void calculateDotJacUError(const MultiBodyTreeCreator& creator, const int nloops,
                           double* max_error) {
    // tree1 is used as reference to compute dot(Jacobian)*u from acceleration(dot(u)=0)
    ptr<MultiBodyTree> tree1(CreateMultiBodyTree(creator));
    ASSERT_TRUE(0x0 != tree1);
    CloneTreeCreator clone(tree1.get());
    // tree2 is used to compute dot(Jacobian)*u using the calculateJacobian function
    ptr<MultiBodyTree> tree2(CreateMultiBodyTree(clone));
    ASSERT_TRUE(0x0 != tree2);

    const int ndofs = tree1->numDoFs();
    const int nbodies = tree1->numBodies();
    if (ndofs <= 0) {
        *max_error = 0;
        return;
    }

    vecx q(ndofs);
    vecx u(ndofs);
    vecx dot_u(ndofs);
    vecx zero(ndofs);
    setZero(zero);

    double max_lin_error = 0;
    double max_ang_error = 0;

    for (int loop = 0; loop < nloops; loop++) {
        for (int i = 0; i < q.size(); i++) {
            q(i) = b3RandRange(-B3_PI, B3_PI);
            u(i) = b3RandRange(-B3_PI, B3_PI);
        }

        EXPECT_EQ(0, tree1->calculateKinematics(q, u, zero));
        EXPECT_EQ(0, tree2->calculatePositionAndVelocityKinematics(q, u));
        EXPECT_EQ(0, tree2->calculateJacobians(q, u));

        for (int idx = 0; idx < nbodies; idx++) {
            vec3 tmp1, tmp2;
            vec3 diff;
            EXPECT_EQ(0, tree1->getBodyLinearAcceleration(idx, &tmp1));
            EXPECT_EQ(0, tree2->getBodyDotJacobianTransU(idx, &tmp2));
            diff = tmp1 - tmp2;
            double lin_error = maxAbs(diff);

            if (lin_error > max_lin_error) {
                max_lin_error = lin_error;
            }

            EXPECT_EQ(0, tree1->getBodyAngularAcceleration(idx, &tmp1));
            EXPECT_EQ(0, tree2->getBodyDotJacobianRotU(idx, &tmp2));
            diff = tmp1 - tmp2;
            double ang_error = maxAbs(diff);
            if (ang_error > max_ang_error) {
                max_ang_error = ang_error;
            }
        }
    }
    *max_error = max_ang_error > max_lin_error ? max_ang_error : max_lin_error;
}

void calculateJacobianError(const MultiBodyTreeCreator& creator, const int nloops,
                            double* max_error) {
    // tree1 is used as reference to compute the Jacobian from velocities with unit u vectors.
    ptr<MultiBodyTree> tree1(CreateMultiBodyTree(creator));
    ASSERT_TRUE(0x0 != tree1);
    // tree2 is used to compute the Jacobians using the calculateJacobian function
    CloneTreeCreator clone(tree1.get());
    ptr<MultiBodyTree> tree2(CreateMultiBodyTree(clone));
    ASSERT_TRUE(0x0 != tree2);

    const int ndofs = tree1->numDoFs();
    const int nbodies = tree1->numBodies();

    if (ndofs <= 0) {
        *max_error = 0;
        return;
    }

    vecx q(ndofs);
    vecx zero(ndofs);
    setZero(zero);
    vecx one(ndofs);

    double max_lin_error = 0;
    double max_ang_error = 0;

    for (int loop = 0; loop < nloops; loop++) {
        for (int i = 0; i < q.size(); i++) {
            q(i) = b3RandRange(-B3_PI, B3_PI);
        }

        EXPECT_EQ(0, tree2->calculatePositionKinematics(q));
        EXPECT_EQ(0, tree2->calculateJacobians(q));

        for (int idx = 0; idx < nbodies; idx++) {
            mat3x ref_jac_r(3, ndofs);
            mat3x ref_jac_t(3, ndofs);
            ref_jac_r.setZero();
            ref_jac_t.setZero();
            // this re-computes all jacobians for every body ...
            // but avoids std::vector<eigen matrix> issues
            for (int col = 0; col < ndofs; col++) {
                setZero(one);
                one(col) = 1.0;
                EXPECT_EQ(0, tree1->calculatePositionAndVelocityKinematics(q, one));
                vec3 vel, omg;
                EXPECT_EQ(0, tree1->getBodyLinearVelocity(idx, &vel));
                EXPECT_EQ(0, tree1->getBodyAngularVelocity(idx, &omg));
                setMat3xElem(0, col, omg(0), &ref_jac_r);
                setMat3xElem(1, col, omg(1), &ref_jac_r);
                setMat3xElem(2, col, omg(2), &ref_jac_r);
                setMat3xElem(0, col, vel(0), &ref_jac_t);
                setMat3xElem(1, col, vel(1), &ref_jac_t);
                setMat3xElem(2, col, vel(2), &ref_jac_t);
            }

            mat3x jac_r(3, ndofs);
            mat3x jac_t(3, ndofs);
            mat3x diff(3, ndofs);

            EXPECT_EQ(0, tree2->getBodyJacobianTrans(idx, &jac_t));
            EXPECT_EQ(0, tree2->getBodyJacobianRot(idx, &jac_r));
            sub(ref_jac_t,jac_t,&diff);
            double lin_error = maxAbsMat3x(diff);
            if (lin_error > max_lin_error) {
                max_lin_error = lin_error;
            }
            sub(ref_jac_r, jac_r,&diff);
            double ang_error = maxAbsMat3x(diff);
            if (ang_error > max_ang_error) {
                max_ang_error = ang_error;
            }
        }
    }
    *max_error = max_ang_error > max_lin_error ? max_ang_error : max_lin_error;
}

void calculateVelocityJacobianError(const MultiBodyTreeCreator& creator, const int nloops,
                                    double* max_error) {
    // tree1 is used as reference to compute the velocities directly
    ptr<MultiBodyTree> tree1(CreateMultiBodyTree(creator));
    ASSERT_TRUE(0x0 != tree1);
    // tree2 is used to compute the velocities via jacobians
    CloneTreeCreator clone(tree1.get());
    ptr<MultiBodyTree> tree2(CreateMultiBodyTree(clone));
    ASSERT_TRUE(0x0 != tree2);

    const int ndofs = tree1->numDoFs();
    const int nbodies = tree1->numBodies();

    if (ndofs <= 0) {
        *max_error = 0;
        return;
    }

    vecx q(ndofs);
    vecx u(ndofs);

    double max_lin_error = 0;
    double max_ang_error = 0;

    for (int loop = 0; loop < nloops; loop++) {
        for (int i = 0; i < q.size(); i++) {
            q(i) = b3RandRange(-B3_PI, B3_PI);
            u(i) = b3RandRange(-B3_PI, B3_PI);
        }

        EXPECT_EQ(0, tree1->calculatePositionAndVelocityKinematics(q, u));
        EXPECT_EQ(0, tree2->calculatePositionKinematics(q));
        EXPECT_EQ(0, tree2->calculateJacobians(q));

        for (int idx = 0; idx < nbodies; idx++) {
            vec3 vel1;
            vec3 omg1;
            vec3 vel2;
            vec3 omg2;
            mat3x jac_r2(3, ndofs);
            mat3x jac_t2(3, ndofs);

            EXPECT_EQ(0, tree1->getBodyLinearVelocity(idx, &vel1));
            EXPECT_EQ(0, tree1->getBodyAngularVelocity(idx, &omg1));
            EXPECT_EQ(0, tree2->getBodyJacobianTrans(idx, &jac_t2));
            EXPECT_EQ(0, tree2->getBodyJacobianRot(idx, &jac_r2));
            omg2 = jac_r2 * u;
            vel2 = jac_t2 * u;

            double lin_error = maxAbs(vel1 - vel2);
            if (lin_error > max_lin_error) {
                max_lin_error = lin_error;
            }
            double ang_error = maxAbs(omg1 - omg2);
            if (ang_error > max_ang_error) {
                max_ang_error = ang_error;
            }
        }
    }
    *max_error = max_ang_error > max_lin_error ? max_ang_error : max_lin_error;
}

// test nonlinear terms: dot(Jacobian)*u (linear and angular acceleration for dot_u ==0)
// from Jacobian calculation method and pseudo-numerically using via the kinematics method.
TEST(InvDynJacobians, JacDotJacU) {
    const int kNumLevels = 5;
#ifdef B3_USE_DOUBLE_PRECISION
	const double kMaxError = 1e-12;
#else
    const double kMaxError = 5e-5;
#endif
    const int kNumLoops = 20;
    for (int level = 0; level < kNumLevels; level++) {
        const int nbodies = BT_ID_POW(2, level);
        CoilCreator coil(nbodies);
        double error;
        calculateDotJacUError(coil, kNumLoops, &error);
        EXPECT_GT(kMaxError, error);
        DillCreator dill(level);
        calculateDotJacUError(dill, kNumLoops, &error);
        EXPECT_GT(kMaxError, error);
    }

    const int kRandomLoops = 100;
    const int kMaxRandomBodies = 128;
    for (int loop = 0; loop < kRandomLoops; loop++) {
        RandomTreeCreator random(kMaxRandomBodies);
        double error;
        calculateDotJacUError(random, kNumLoops, &error);
        EXPECT_GT(kMaxError, error);
    }
}

// Jacobians: linear and angular acceleration for dot_u ==0
// from Jacobian calculation method and pseudo-numerically using via the kinematics method.
TEST(InvDynJacobians, Jacobians) {
    const int kNumLevels = 5;
#ifdef B3_USE_DOUBLE_PRECISION
	const double kMaxError = 1e-12;
#else
	const double kMaxError = 5e-5;
#endif
	const int kNumLoops = 20;
    for (int level = 0; level < kNumLevels; level++) {
        const int nbodies = BT_ID_POW(2, level);
        CoilCreator coil(nbodies);
        double error;
        calculateJacobianError(coil, kNumLoops, &error);
        EXPECT_GT(kMaxError, error);
        DillCreator dill(level);
        calculateDotJacUError(dill, kNumLoops, &error);
        EXPECT_GT(kMaxError, error);
    }
    const int kRandomLoops = 20;
    const int kMaxRandomBodies = 16;
    for (int loop = 0; loop < kRandomLoops; loop++) {
        RandomTreeCreator random(kMaxRandomBodies);
        double error;
        calculateJacobianError(random, kNumLoops, &error);
        EXPECT_GT(kMaxError, error);
    }
}

// test for jacobian*u == velocity
TEST(InvDynJacobians, VelocitiesFromJacobians) {
    const int kRandomLoops = 20;
    const int kMaxRandomBodies = 16;
    const int kNumLoops = 20;
#ifdef B3_USE_DOUBLE_PRECISION
	const double kMaxError = 1e-12;
#else
	const double kMaxError = 5e-5;
#endif
	for (int loop = 0; loop < kRandomLoops; loop++) {
        RandomTreeCreator random(kMaxRandomBodies);
        double error;
        calculateVelocityJacobianError(random, kNumLoops, &error);
        EXPECT_GT(kMaxError, error);
    }
}
#endif

int main(int argc, char** argv) {
	b3Srand(1234);
    ::testing::InitGoogleTest(&argc, argv);
    return RUN_ALL_TESTS();
}