File: test_invdyn_kinematics.cpp

package info (click to toggle)
bullet 2.87%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 14,272 kB
  • sloc: cpp: 204,241; ansic: 12,100; lisp: 12,017; python: 593; makefile: 136; sh: 8
file content (374 lines) | stat: -rw-r--r-- 14,264 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
// Test of kinematic consistency: check if finite differences of velocities, accelerations
// match positions

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>

#include <gtest/gtest.h>

#include "../Extras/InverseDynamics/CoilCreator.hpp"
#include "../Extras/InverseDynamics/DillCreator.hpp"
#include "../Extras/InverseDynamics/SimpleTreeCreator.hpp"
#include "BulletInverseDynamics/MultiBodyTree.hpp"

using namespace btInverseDynamics;

const int kLevel = 5;
const int kNumBodies = BT_ID_POW(2, kLevel);

// template function for calculating the norm
template <typename T>
idScalar calculateNorm(T&);
// only implemented for vec3
template <>
idScalar calculateNorm(vec3& v) {
    return BT_ID_SQRT(BT_ID_POW(v(0), 2) + BT_ID_POW(v(1), 2) + BT_ID_POW(v(2), 2));
}

// template function to convert a DiffType (finite differences)
// to a ValueType. This is for angular velocity calculations
// via finite differences.
template <typename ValueType, typename DiffType>
DiffType toDiffType(ValueType& fd, ValueType& val);

// vector case: just return finite difference approximation
template <>
vec3 toDiffType(vec3& fd, vec3& val) {
    return fd;
}

// orientation case: calculate spin tensor and extract angular velocity
template <>
vec3 toDiffType(mat33& fd, mat33& val) {
    // spin tensor
    mat33 omega_tilde = fd * val.transpose();
    // extract vector from spin tensor
    vec3 omega;
    omega(0) = 0.5 * (omega_tilde(2, 1) - omega_tilde(1, 2));
    omega(1) = 0.5 * (omega_tilde(0, 2) - omega_tilde(2, 0));
    omega(2) = 0.5 * (omega_tilde(1, 0) - omega_tilde(0, 1));
    return omega;
}

/// Class for calculating finite difference approximation
/// of time derivatives and comparing it to an analytical solution
/// DiffType and ValueType can be different, to allow comparison
/// of angular velocity vectors and orientations given as transform matrices.
template <typename ValueType, typename DiffType>
class DiffFD {
public:
    DiffFD() : m_dt(0.0), m_num_updates(0), m_max_error(0.0), m_max_value(0.0), m_valid_fd(false) {}

    void init(std::string name, idScalar dt) {
        m_name = name;
        m_dt = dt;
        m_num_updates = 0;
        m_max_error = 0.0;
        m_max_value = 0.0;
        m_valid_fd = false;
    }

    void update(const ValueType& val, const DiffType& true_diff) {
        m_val = val;
        if (m_num_updates > 2) {
            // 2nd order finite difference approximation for d(value)/dt
            ValueType diff_value_fd = (val - m_older_val) / (2.0 * m_dt);
            // convert to analytical diff type. This is for angular velocities
            m_diff_fd = toDiffType<ValueType, DiffType>(diff_value_fd, m_old_val);
            // now, calculate the error
            DiffType error_value_type = m_diff_fd - m_old_true_diff;
            idScalar error = calculateNorm<DiffType>(error_value_type);
            if (error > m_max_error) {
                m_max_error = error;
            }

            idScalar value = calculateNorm<DiffType>(m_old_true_diff);
            if (value > m_max_value) {
                m_max_value = value;
            }

            m_valid_fd = true;
        }
        m_older_val = m_old_val;
        m_old_val = m_val;
        m_old_true_diff = true_diff;
        m_num_updates++;
        m_time += m_dt;
    }

    void printMaxError() {
        printf("max_error: %e dt= %e max_value= %e fraction= %e\n", m_max_error, m_dt, m_max_value,
               m_max_value > 0.0 ? m_max_error / m_max_value : 0.0);
    }
    void printCurrent() {
        if (m_valid_fd) {
            // note: m_old_true_diff already equals m_true_diff here, so values are not aligned.
            //      (but error calculation takes this into account)
            printf("%s time: %e fd: %e %e %e true: %e %e %e\n", m_name.c_str(), m_time,
                   m_diff_fd(0), m_diff_fd(1), m_diff_fd(2), m_old_true_diff(0), m_old_true_diff(1),
                   m_old_true_diff(2));
        }
    }

    idScalar getMaxError() const { return m_max_error; }
    idScalar getMaxValue() const { return m_max_value; }

private:
    idScalar m_dt;
    ValueType m_val;
    ValueType m_old_val;
    ValueType m_older_val;
    DiffType m_old_true_diff;
    DiffType m_diff_fd;
    int m_num_updates;
    idScalar m_max_error;
    idScalar m_max_value;
    idScalar m_time;
    std::string m_name;
    bool m_valid_fd;
};

template <typename ValueType, typename DiffType>
class VecDiffFD {
public:
    VecDiffFD(std::string name, int dim, idScalar dt) : m_name(name), m_fd(dim), m_dt(dt) {
        for (int i = 0; i < m_fd.size(); i++) {
            char buf[256];
            BT_ID_SNPRINTF(buf, 256, "%s-%.2d", name.c_str(), i);
            m_fd[i].init(buf, dt);
        }
    }
    void update(int i, ValueType& val, DiffType& true_diff) { m_fd[i].update(val, true_diff); }
    idScalar getMaxError() const {
        idScalar max_error = 0;
        for (int i = 0; i < m_fd.size(); i++) {
            const idScalar error = m_fd[i].getMaxError();
            if (error > max_error) {
                max_error = error;
            }
        }
        return max_error;
    }
    idScalar getMaxValue() const {
        idScalar max_value = 0;
        for (int i = 0; i < m_fd.size(); i++) {
            const idScalar value = m_fd[i].getMaxValue();
            if (value > max_value) {
                max_value= value;
            }
        }
        return max_value;
    }
    void printMaxError() {
        printf("%s: total  dt= %e max_error= %e\n", m_name.c_str(), m_dt, getMaxError());
    }

    void printCurrent() {
        for (int i = 0; i < m_fd.size(); i++) {
            m_fd[i].printCurrent();
        }
    }

private:
    std::string m_name;
    std::vector<DiffFD<ValueType, DiffType> > m_fd;
    const idScalar m_dt;
    idScalar m_max_error;
};

// calculate maximum difference between finite difference and analytical differentiation
int calculateDifferentiationError(const MultiBodyTreeCreator& creator, idScalar deltaT,
                                  idScalar endTime, idScalar* max_linear_velocity_error,
                                  idScalar* max_angular_velocity_error,
                                  idScalar* max_linear_acceleration_error,
                                  idScalar* max_angular_acceleration_error) {
    // setup system
    MultiBodyTree* tree = CreateMultiBodyTree(creator);
    if (0x0 == tree) {
        return -1;
    }
    // set gravity to zero, so nothing is added to accelerations in forward kinematics
    vec3 gravity_zero;
    gravity_zero(0) = 0;
    gravity_zero(1) = 0;
    gravity_zero(2) = 0;
    tree->setGravityInWorldFrame(gravity_zero);
    //
    const idScalar kAmplitude = 1.0;
    const idScalar kFrequency = 1.0;

    vecx q(tree->numDoFs());
    vecx dot_q(tree->numDoFs());
    vecx ddot_q(tree->numDoFs());
    vecx joint_forces(tree->numDoFs());

    VecDiffFD<vec3, vec3> fd_vel("linear-velocity", tree->numBodies(), deltaT);
    VecDiffFD<vec3, vec3> fd_acc("linear-acceleration", tree->numBodies(), deltaT);
    VecDiffFD<mat33, vec3> fd_omg("angular-velocity", tree->numBodies(), deltaT);
    VecDiffFD<vec3, vec3> fd_omgd("angular-acceleration", tree->numBodies(), deltaT);

    for (idScalar t = 0.0; t < endTime; t += deltaT) {
        for (int body = 0; body < tree->numBodies(); body++) {
            q(body) = kAmplitude * sin(t * 2.0 * BT_ID_PI * kFrequency);
            dot_q(body) = kAmplitude * 2.0 * BT_ID_PI * kFrequency * cos(t * 2.0 * BT_ID_PI * kFrequency);
            ddot_q(body) =
                -kAmplitude * pow(2.0 * BT_ID_PI * kFrequency, 2) * sin(t * 2.0 * BT_ID_PI * kFrequency);
        }

        if (-1 == tree->calculateInverseDynamics(q, dot_q, ddot_q, &joint_forces)) {
            delete tree;
            return -1;
        }

        // position/velocity
        for (int body = 0; body < tree->numBodies(); body++) {
            vec3 pos;
            vec3 vel;
            mat33 world_T_body;
            vec3 omega;
            vec3 dot_omega;
            vec3 acc;

            tree->getBodyOrigin(body, &pos);
            tree->getBodyTransform(body, &world_T_body);
            tree->getBodyLinearVelocity(body, &vel);
            tree->getBodyAngularVelocity(body, &omega);
            tree->getBodyLinearAcceleration(body, &acc);
            tree->getBodyAngularAcceleration(body, &dot_omega);

            fd_vel.update(body, pos, vel);
            fd_omg.update(body, world_T_body, omega);
            fd_acc.update(body, vel, acc);
            fd_omgd.update(body, omega, dot_omega);


//        fd_vel.printCurrent();
//fd_acc.printCurrent();
//fd_omg.printCurrent();
//fd_omgd.printCurrent();
        }
    }

    *max_linear_velocity_error = fd_vel.getMaxError()/fd_vel.getMaxValue();
    *max_angular_velocity_error = fd_omg.getMaxError()/fd_omg.getMaxValue();
    *max_linear_acceleration_error = fd_acc.getMaxError()/fd_acc.getMaxValue();
    *max_angular_acceleration_error = fd_omgd.getMaxError()/fd_omgd.getMaxValue();

    delete tree;
    return 0;
}

// first test: absolute difference between numerical and numerial
// differentiation should be small
TEST(InvDynKinematicsDifferentiation, errorAbsolute) {
    //CAVEAT:these values are hand-tuned to work for the specific trajectory defined above.
#ifdef BT_ID_USE_DOUBLE_PRECISION
    const idScalar kDeltaT = 1e-7;
	const idScalar kAcceptableError = 1e-4;
#else
    const idScalar kDeltaT = 1e-4;
	const idScalar kAcceptableError = 5e-3;
#endif
    const idScalar kDuration = 0.01;
    

    CoilCreator coil_creator(kNumBodies);
    DillCreator dill_creator(kLevel);
    SimpleTreeCreator simple_creator(kNumBodies);

    idScalar max_linear_velocity_error;
    idScalar max_angular_velocity_error;
    idScalar max_linear_acceleration_error;
    idScalar max_angular_acceleration_error;

    // test serial chain
    calculateDifferentiationError(coil_creator, kDeltaT, kDuration, &max_linear_velocity_error,
                                  &max_angular_velocity_error, &max_linear_acceleration_error,
                                  &max_angular_acceleration_error);

    EXPECT_LT(max_linear_velocity_error, kAcceptableError);
    EXPECT_LT(max_angular_velocity_error, kAcceptableError);
    EXPECT_LT(max_linear_acceleration_error, kAcceptableError);
    EXPECT_LT(max_angular_acceleration_error, kAcceptableError);

    // test branched tree
    calculateDifferentiationError(dill_creator, kDeltaT, kDuration, &max_linear_velocity_error,
                                  &max_angular_velocity_error, &max_linear_acceleration_error,
                                  &max_angular_acceleration_error);

    EXPECT_LT(max_linear_velocity_error, kAcceptableError);
    EXPECT_LT(max_angular_velocity_error, kAcceptableError);
    EXPECT_LT(max_linear_acceleration_error, kAcceptableError);
    EXPECT_LT(max_angular_acceleration_error, kAcceptableError);

    // test system with different joint types
    calculateDifferentiationError(simple_creator, kDeltaT, kDuration, &max_linear_velocity_error,
                                  &max_angular_velocity_error, &max_linear_acceleration_error,
                                  &max_angular_acceleration_error);

    EXPECT_LT(max_linear_velocity_error, kAcceptableError);
    EXPECT_LT(max_angular_velocity_error, kAcceptableError);
    EXPECT_LT(max_linear_acceleration_error, kAcceptableError);
    EXPECT_LT(max_angular_acceleration_error, kAcceptableError);
}

// second test: check if the change in the differentiation error
// is consitent with the second order approximation, ie, error ~ O(dt^2)
TEST(InvDynKinematicsDifferentiation, errorOrder) {
    const idScalar kDeltaTs[2] = {1e-4, 1e-5};
    const idScalar kDuration = 1e-2;

    CoilCreator coil_creator(kNumBodies);
    //    DillCreator dill_creator(kLevel);
    //    SimpleTreeCreator simple_creator(kNumBodies);

    idScalar max_linear_velocity_error[2];
    idScalar max_angular_velocity_error[2];
    idScalar max_linear_acceleration_error[2];
    idScalar max_angular_acceleration_error[2];

    // test serial chain
    calculateDifferentiationError(coil_creator, kDeltaTs[0], kDuration,
                                  &max_linear_velocity_error[0], &max_angular_velocity_error[0],
                                  &max_linear_acceleration_error[0],
                                  &max_angular_acceleration_error[0]);

    calculateDifferentiationError(coil_creator, kDeltaTs[1], kDuration,
                                  &max_linear_velocity_error[1], &max_angular_velocity_error[1],
                                  &max_linear_acceleration_error[1],
                                  &max_angular_acceleration_error[1]);

/*
	const idScalar expected_linear_velocity_error_1 =
        max_linear_velocity_error[0] * pow(kDeltaTs[1] / kDeltaTs[0], 2);
    const idScalar expected_angular_velocity_error_1 =
        max_angular_velocity_error[0] * pow(kDeltaTs[1] / kDeltaTs[0], 2);
    const idScalar expected_linear_acceleration_error_1 =
        max_linear_acceleration_error[0] * pow(kDeltaTs[1] / kDeltaTs[0], 2);
    const idScalar expected_angular_acceleration_error_1 =
        max_angular_acceleration_error[0] * pow(kDeltaTs[1] / kDeltaTs[0], 2);

    printf("linear vel error: %e %e  %e\n", max_linear_velocity_error[1],
           expected_linear_velocity_error_1,
           max_linear_velocity_error[1] - expected_linear_velocity_error_1);
    printf("angular vel error: %e %e  %e\n", max_angular_velocity_error[1],
           expected_angular_velocity_error_1,
           max_angular_velocity_error[1] - expected_angular_velocity_error_1);
    printf("linear acc error: %e %e  %e\n", max_linear_acceleration_error[1],
           expected_linear_acceleration_error_1,
           max_linear_acceleration_error[1] - expected_linear_acceleration_error_1);
    printf("angular acc error: %e %e  %e\n", max_angular_acceleration_error[1],
           expected_angular_acceleration_error_1,
           max_angular_acceleration_error[1] - expected_angular_acceleration_error_1);
*/
}

int main(int argc, char** argv) {

    ::testing::InitGoogleTest(&argc, argv);
    return RUN_ALL_TESTS();

    return EXIT_SUCCESS;
}