1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
#include "float_math.h"
#include "ConvexBuilder.h"
#include "meshvolume.h"
#include "bestfit.h"
#include <assert.h>
#include "cd_hull.h"
#include "fitsphere.h"
#include "bestfitobb.h"
unsigned int MAXDEPTH = 8;
float CONCAVE_PERCENT = 1.0f;
float MERGE_PERCENT = 2.0f;
CHull::CHull(const ConvexDecomposition::ConvexResult &result)
{
mResult = new ConvexDecomposition::ConvexResult(result);
mVolume = computeMeshVolume(result.mHullVertices, result.mHullTcount, result.mHullIndices);
mDiagonal = getBoundingRegion(result.mHullVcount, result.mHullVertices, sizeof(float) * 3, mMin, mMax);
float dx = mMax[0] - mMin[0];
float dy = mMax[1] - mMin[1];
float dz = mMax[2] - mMin[2];
dx *= 0.1f; // inflate 1/10th on each edge
dy *= 0.1f; // inflate 1/10th on each edge
dz *= 0.1f; // inflate 1/10th on each edge
mMin[0] -= dx;
mMin[1] -= dy;
mMin[2] -= dz;
mMax[0] += dx;
mMax[1] += dy;
mMax[2] += dz;
}
CHull::~CHull(void)
{
delete mResult;
}
bool CHull::overlap(const CHull &h) const
{
return overlapAABB(mMin, mMax, h.mMin, h.mMax);
}
ConvexBuilder::ConvexBuilder(ConvexDecompInterface *callback)
{
mCallback = callback;
}
ConvexBuilder::~ConvexBuilder(void)
{
int i;
for (i = 0; i < mChulls.size(); i++)
{
CHull *cr = mChulls[i];
delete cr;
}
}
bool ConvexBuilder::isDuplicate(unsigned int i1, unsigned int i2, unsigned int i3,
unsigned int ci1, unsigned int ci2, unsigned int ci3)
{
unsigned int dcount = 0;
assert(i1 != i2 && i1 != i3 && i2 != i3);
assert(ci1 != ci2 && ci1 != ci3 && ci2 != ci3);
if (i1 == ci1 || i1 == ci2 || i1 == ci3) dcount++;
if (i2 == ci1 || i2 == ci2 || i2 == ci3) dcount++;
if (i3 == ci1 || i3 == ci2 || i3 == ci3) dcount++;
return dcount == 3;
}
void ConvexBuilder::getMesh(const ConvexDecomposition::ConvexResult &cr, VertexLookup vc, UintVector &indices)
{
unsigned int *src = cr.mHullIndices;
for (unsigned int i = 0; i < cr.mHullTcount; i++)
{
unsigned int i1 = *src++;
unsigned int i2 = *src++;
unsigned int i3 = *src++;
const float *p1 = &cr.mHullVertices[i1 * 3];
const float *p2 = &cr.mHullVertices[i2 * 3];
const float *p3 = &cr.mHullVertices[i3 * 3];
i1 = Vl_getIndex(vc, p1);
i2 = Vl_getIndex(vc, p2);
i3 = Vl_getIndex(vc, p3);
#if 0
bool duplicate = false;
unsigned int tcount = indices.size()/3;
for (unsigned int j=0; j<tcount; j++)
{
unsigned int ci1 = indices[j*3+0];
unsigned int ci2 = indices[j*3+1];
unsigned int ci3 = indices[j*3+2];
if ( isDuplicate(i1,i2,i3, ci1, ci2, ci3 ) )
{
duplicate = true;
break;
}
}
if ( !duplicate )
{
indices.push_back(i1);
indices.push_back(i2);
indices.push_back(i3);
}
#endif
}
}
CHull *ConvexBuilder::canMerge(CHull *a, CHull *b)
{
if (!a->overlap(*b)) return 0; // if their AABB's (with a little slop) don't overlap, then return.
CHull *ret = 0;
// ok..we are going to combine both meshes into a single mesh
// and then we are going to compute the concavity...
VertexLookup vc = Vl_createVertexLookup();
UintVector indices;
getMesh(*a->mResult, vc, indices);
getMesh(*b->mResult, vc, indices);
unsigned int vcount = Vl_getVcount(vc);
const float *vertices = Vl_getVertices(vc);
unsigned int tcount = indices.size() / 3;
//don't do anything if hull is empty
if (!tcount)
{
Vl_releaseVertexLookup(vc);
return 0;
}
ConvexDecomposition::HullResult hresult;
ConvexDecomposition::HullLibrary hl;
ConvexDecomposition::HullDesc desc;
desc.SetHullFlag(ConvexDecomposition::QF_TRIANGLES);
desc.mVcount = vcount;
desc.mVertices = vertices;
desc.mVertexStride = sizeof(float) * 3;
ConvexDecomposition::HullError hret = hl.CreateConvexHull(desc, hresult);
if (hret == ConvexDecomposition::QE_OK)
{
float combineVolume = computeMeshVolume(hresult.mOutputVertices, hresult.mNumFaces, hresult.mIndices);
float sumVolume = a->mVolume + b->mVolume;
float percent = (sumVolume * 100) / combineVolume;
if (percent >= (100.0f - MERGE_PERCENT))
{
ConvexDecomposition::ConvexResult cr(hresult.mNumOutputVertices, hresult.mOutputVertices, hresult.mNumFaces, hresult.mIndices);
ret = new CHull(cr);
}
}
Vl_releaseVertexLookup(vc);
return ret;
}
bool ConvexBuilder::combineHulls(void)
{
bool combine = false;
sortChulls(mChulls); // sort the convex hulls, largest volume to least...
CHullVector output; // the output hulls...
int i;
for (i = 0; i < mChulls.size() && !combine; ++i)
{
CHull *cr = mChulls[i];
int j;
for (j = 0; j < mChulls.size(); j++)
{
CHull *match = mChulls[j];
if (cr != match) // don't try to merge a hull with itself, that be stoopid
{
CHull *merge = canMerge(cr, match); // if we can merge these two....
if (merge)
{
output.push_back(merge);
++i;
while (i != mChulls.size())
{
CHull *cr = mChulls[i];
if (cr != match)
{
output.push_back(cr);
}
i++;
}
delete cr;
delete match;
combine = true;
break;
}
}
}
if (combine)
{
break;
}
else
{
output.push_back(cr);
}
}
if (combine)
{
mChulls.clear();
mChulls.copyFromArray(output);
output.clear();
}
return combine;
}
unsigned int ConvexBuilder::process(const ConvexDecomposition::DecompDesc &desc)
{
unsigned int ret = 0;
MAXDEPTH = desc.mDepth;
CONCAVE_PERCENT = desc.mCpercent;
MERGE_PERCENT = desc.mPpercent;
calcConvexDecomposition(desc.mVcount, desc.mVertices, desc.mTcount, desc.mIndices, this, 0, 0);
while (combineHulls())
; // keep combinging hulls until I can't combine any more...
int i;
for (i = 0; i < mChulls.size(); i++)
{
CHull *cr = mChulls[i];
// before we hand it back to the application, we need to regenerate the hull based on the
// limits given by the user.
const ConvexDecomposition::ConvexResult &c = *cr->mResult; // the high resolution hull...
ConvexDecomposition::HullResult result;
ConvexDecomposition::HullLibrary hl;
ConvexDecomposition::HullDesc hdesc;
hdesc.SetHullFlag(ConvexDecomposition::QF_TRIANGLES);
hdesc.mVcount = c.mHullVcount;
hdesc.mVertices = c.mHullVertices;
hdesc.mVertexStride = sizeof(float) * 3;
hdesc.mMaxVertices = desc.mMaxVertices; // maximum number of vertices allowed in the output
if (desc.mSkinWidth)
{
hdesc.mSkinWidth = desc.mSkinWidth;
hdesc.SetHullFlag(ConvexDecomposition::QF_SKIN_WIDTH); // do skin width computation.
}
ConvexDecomposition::HullError ret = hl.CreateConvexHull(hdesc, result);
if (ret == ConvexDecomposition::QE_OK)
{
ConvexDecomposition::ConvexResult r(result.mNumOutputVertices, result.mOutputVertices, result.mNumFaces, result.mIndices);
r.mHullVolume = computeMeshVolume(result.mOutputVertices, result.mNumFaces, result.mIndices); // the volume of the hull.
// compute the best fit OBB
computeBestFitOBB(result.mNumOutputVertices, result.mOutputVertices, sizeof(float) * 3, r.mOBBSides, r.mOBBTransform);
r.mOBBVolume = r.mOBBSides[0] * r.mOBBSides[1] * r.mOBBSides[2]; // compute the OBB volume.
fm_getTranslation(r.mOBBTransform, r.mOBBCenter); // get the translation component of the 4x4 matrix.
fm_matrixToQuat(r.mOBBTransform, r.mOBBOrientation); // extract the orientation as a quaternion.
r.mSphereRadius = computeBoundingSphere(result.mNumOutputVertices, result.mOutputVertices, r.mSphereCenter);
r.mSphereVolume = fm_sphereVolume(r.mSphereRadius);
mCallback->ConvexDecompResult(r);
}
hl.ReleaseResult(result);
delete cr;
}
ret = mChulls.size();
mChulls.clear();
return ret;
}
void ConvexBuilder::ConvexDebugTri(const float *p1, const float *p2, const float *p3, unsigned int color)
{
mCallback->ConvexDebugTri(p1, p2, p3, color);
}
void ConvexBuilder::ConvexDebugOBB(const float *sides, const float *matrix, unsigned int color)
{
mCallback->ConvexDebugOBB(sides, matrix, color);
}
void ConvexBuilder::ConvexDebugPoint(const float *p, float dist, unsigned int color)
{
mCallback->ConvexDebugPoint(p, dist, color);
}
void ConvexBuilder::ConvexDebugBound(const float *bmin, const float *bmax, unsigned int color)
{
mCallback->ConvexDebugBound(bmin, bmax, color);
}
void ConvexBuilder::ConvexDecompResult(ConvexDecomposition::ConvexResult &result)
{
CHull *ch = new CHull(result);
mChulls.push_back(ch);
}
void ConvexBuilder::sortChulls(CHullVector &hulls)
{
hulls.quickSort(CHullSort());
//hulls.heapSort(CHullSort());
}
|