File: cd_vector.h

package info (click to toggle)
bullet 3.06%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 15,012 kB
  • sloc: cpp: 243,705; lisp: 12,017; ansic: 11,175; python: 626; makefile: 133; sh: 75
file content (1192 lines) | stat: -rw-r--r-- 25,988 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
#ifndef CD_VECTOR_H

#define CD_VECTOR_H

/*----------------------------------------------------------------------
		Copyright (c) 2004 Open Dynamics Framework Group
					www.physicstools.org
		All rights reserved.

		Redistribution and use in source and binary forms, with or without modification, are permitted provided
		that the following conditions are met:

		Redistributions of source code must retain the above copyright notice, this list of conditions
		and the following disclaimer.

		Redistributions in binary form must reproduce the above copyright notice,
		this list of conditions and the following disclaimer in the documentation
		and/or other materials provided with the distribution.

		Neither the name of the Open Dynamics Framework Group nor the names of its contributors may
		be used to endorse or promote products derived from this software without specific prior written permission.

		THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
		INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
		DISCLAIMED. IN NO EVENT SHALL THE INTEL OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
		EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
		LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
		IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
		THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-----------------------------------------------------------------------*/

// http://codesuppository.blogspot.com
//
// mailto: jratcliff@infiniplex.net
//
// http://www.amillionpixels.us
//

#pragma warning(disable : 4786)

#include <math.h>
#include <float.h>
#include <vector>

namespace ConvexDecomposition
{
const float DEG_TO_RAD = ((2.0f * 3.14152654f) / 360.0f);
const float RAD_TO_DEG = (360.0f / (2.0f * 3.141592654f));

class Vector3d
{
public:
	Vector3d(void){};  // null constructor, does not inialize point.

	Vector3d(const Vector3d &a)  // constructor copies existing vector.
	{
		x = a.x;
		y = a.y;
		z = a.z;
	};

	Vector3d(float a, float b, float c)  // construct with initial point.
	{
		x = a;
		y = b;
		z = c;
	};

	Vector3d(const float *t)
	{
		x = t[0];
		y = t[1];
		z = t[2];
	};

	Vector3d(const int *t)
	{
		x = t[0];
		y = t[1];
		z = t[2];
	};

	bool operator==(const Vector3d &a) const
	{
		return (a.x == x && a.y == y && a.z == z);
	};

	bool operator!=(const Vector3d &a) const
	{
		return (a.x != x || a.y != y || a.z != z);
	};

	// Operators
	Vector3d &operator=(const Vector3d &A)  // ASSIGNMENT (=)
	{
		x = A.x;
		y = A.y;
		z = A.z;
		return (*this);
	};

	Vector3d operator+(const Vector3d &A) const  // ADDITION (+)
	{
		Vector3d Sum(x + A.x, y + A.y, z + A.z);
		return (Sum);
	};

	Vector3d operator-(const Vector3d &A) const  // SUBTRACTION (-)
	{
		Vector3d Diff(x - A.x, y - A.y, z - A.z);
		return (Diff);
	};

	Vector3d operator*(const float s) const  // MULTIPLY BY SCALAR (*)
	{
		Vector3d Scaled(x * s, y * s, z * s);
		return (Scaled);
	};

	Vector3d operator+(const float s) const  // ADD CONSTANT TO ALL 3 COMPONENTS (*)
	{
		Vector3d Scaled(x + s, y + s, z + s);
		return (Scaled);
	};

	Vector3d operator/(const float s) const  // DIVIDE BY SCALAR (/)
	{
		float r = 1.0f / s;
		Vector3d Scaled(x * r, y * r, z * r);
		return (Scaled);
	};

	void operator/=(float A)  // ACCUMULATED VECTOR ADDITION (/=)
	{
		x /= A;
		y /= A;
		z /= A;
	};

	void operator+=(const Vector3d A)  // ACCUMULATED VECTOR ADDITION (+=)
	{
		x += A.x;
		y += A.y;
		z += A.z;
	};
	void operator-=(const Vector3d A)  // ACCUMULATED VECTOR SUBTRACTION (+=)
	{
		x -= A.x;
		y -= A.y;
		z -= A.z;
	};
	void operator*=(const float s)  // ACCUMULATED SCALAR MULTIPLICATION (*=) (bpc 4/24/2000)
	{
		x *= s;
		y *= s;
		z *= s;
	}

	void operator+=(const float A)  // ACCUMULATED VECTOR ADDITION (+=)
	{
		x += A;
		y += A;
		z += A;
	};

	Vector3d operator-(void) const  // NEGATION (-)
	{
		Vector3d Negated(-x, -y, -z);
		return (Negated);
	};

	float operator[](const int i) const  // ALLOWS VECTOR ACCESS AS AN ARRAY.
	{
		return ((i == 0) ? x : ((i == 1) ? y : z));
	};
	float &operator[](const int i)
	{
		return ((i == 0) ? x : ((i == 1) ? y : z));
	};
	//

	// accessor methods.
	float GetX(void) const { return x; };
	float GetY(void) const { return y; };
	float GetZ(void) const { return z; };

	float X(void) const { return x; };
	float Y(void) const { return y; };
	float Z(void) const { return z; };

	void SetX(float t) { x = t; };
	void SetY(float t) { y = t; };
	void SetZ(float t) { z = t; };

	bool IsSame(const Vector3d &v, float epsilon) const
	{
		float dx = fabsf(x - v.x);
		if (dx > epsilon) return false;
		float dy = fabsf(y - v.y);
		if (dy > epsilon) return false;
		float dz = fabsf(z - v.z);
		if (dz > epsilon) return false;
		return true;
	}

	float ComputeNormal(const Vector3d &A,
						const Vector3d &B,
						const Vector3d &C)
	{
		float vx, vy, vz, wx, wy, wz, vw_x, vw_y, vw_z, mag;

		vx = (B.x - C.x);
		vy = (B.y - C.y);
		vz = (B.z - C.z);

		wx = (A.x - B.x);
		wy = (A.y - B.y);
		wz = (A.z - B.z);

		vw_x = vy * wz - vz * wy;
		vw_y = vz * wx - vx * wz;
		vw_z = vx * wy - vy * wx;

		mag = sqrtf((vw_x * vw_x) + (vw_y * vw_y) + (vw_z * vw_z));

		if (mag < 0.000001f)
		{
			mag = 0;
		}
		else
		{
			mag = 1.0f / mag;
		}

		x = vw_x * mag;
		y = vw_y * mag;
		z = vw_z * mag;

		return mag;
	}

	void ScaleSumScale(float c0, float c1, const Vector3d &pos)
	{
		x = (x * c0) + (pos.x * c1);
		y = (y * c0) + (pos.y * c1);
		z = (z * c0) + (pos.z * c1);
	}

	void SwapYZ(void)
	{
		float t = y;
		y = z;
		z = t;
	};

	void Get(float *v) const
	{
		v[0] = x;
		v[1] = y;
		v[2] = z;
	};

	void Set(const int *p)
	{
		x = (float)p[0];
		y = (float)p[1];
		z = (float)p[2];
	}

	void Set(const float *p)
	{
		x = (float)p[0];
		y = (float)p[1];
		z = (float)p[2];
	}

	void Set(float a, float b, float c)
	{
		x = a;
		y = b;
		z = c;
	};

	void Zero(void)
	{
		x = y = z = 0;
	};

	const float *Ptr() const { return &x; }
	float *Ptr() { return &x; }

	// return -(*this).
	Vector3d negative(void) const
	{
		Vector3d result;
		result.x = -x;
		result.y = -y;
		result.z = -z;
		return result;
	}

	float Magnitude(void) const
	{
		return float(sqrt(x * x + y * y + z * z));
	};

	float FastMagnitude(void) const
	{
		return float(sqrtf(x * x + y * y + z * z));
	};

	float FasterMagnitude(void) const
	{
		return float(sqrtf(x * x + y * y + z * z));
	};

	void Lerp(const Vector3d &from, const Vector3d &to, float slerp)
	{
		x = ((to.x - from.x) * slerp) + from.x;
		y = ((to.y - from.y) * slerp) + from.y;
		z = ((to.z - from.z) * slerp) + from.z;
	};

	// Highly specialized interpolate routine.  Will compute the interpolated position
	// shifted forward or backwards along the ray defined between (from) and (to).
	// Reason for existance is so that when a bullet collides with a wall, for
	// example, you can generate a graphic effect slightly *before* it hit the
	// wall so that the effect doesn't sort into the wall itself.
	void Interpolate(const Vector3d &from, const Vector3d &to, float offset)
	{
		x = to.x - from.x;
		y = to.y - from.y;
		z = to.z - from.z;
		float d = sqrtf(x * x + y * y + z * z);
		float recip = 1.0f / d;
		x *= recip;
		y *= recip;
		z *= recip;   // normalize vector
		d += offset;  // shift along ray
		x = x * d + from.x;
		y = y * d + from.y;
		z = z * d + from.z;
	};

	bool BinaryEqual(const Vector3d &p) const
	{
		const int *source = (const int *)&x;
		const int *dest = (const int *)&p.x;

		if (source[0] == dest[0] &&
			source[1] == dest[1] &&
			source[2] == dest[2]) return true;

		return false;
	};

	/*bool BinaryEqual(const Vector3d<int> &p) const
	{
		if ( x == p.x && y == p.y && z == p.z ) return true;
		return false;
	}
	*/

	/** Computes the reflection vector between two vectors.*/
	void Reflection(const Vector3d &a, const Vector3d &b)  // compute reflection vector.
	{
		Vector3d c;
		Vector3d d;

		float dot = a.Dot(b) * 2.0f;

		c = b * dot;

		d = c - a;

		x = -d.x;
		y = -d.y;
		z = -d.z;
	};

	void AngleAxis(float angle, const Vector3d &axis)
	{
		x = axis.x * angle;
		y = axis.y * angle;
		z = axis.z * angle;
	};

	float Length(void) const  // length of vector.
	{
		return float(sqrt(x * x + y * y + z * z));
	};

	float ComputePlane(const Vector3d &A,
					   const Vector3d &B,
					   const Vector3d &C)
	{
		float vx, vy, vz, wx, wy, wz, vw_x, vw_y, vw_z, mag;

		vx = (B.x - C.x);
		vy = (B.y - C.y);
		vz = (B.z - C.z);

		wx = (A.x - B.x);
		wy = (A.y - B.y);
		wz = (A.z - B.z);

		vw_x = vy * wz - vz * wy;
		vw_y = vz * wx - vx * wz;
		vw_z = vx * wy - vy * wx;

		mag = sqrtf((vw_x * vw_x) + (vw_y * vw_y) + (vw_z * vw_z));

		if (mag < 0.000001f)
		{
			mag = 0;
		}
		else
		{
			mag = 1.0f / mag;
		}

		x = vw_x * mag;
		y = vw_y * mag;
		z = vw_z * mag;

		float D = 0.0f - ((x * A.x) + (y * A.y) + (z * A.z));

		return D;
	}

	float FastLength(void) const  // length of vector.
	{
		return float(sqrtf(x * x + y * y + z * z));
	};

	float FasterLength(void) const  // length of vector.
	{
		return float(sqrtf(x * x + y * y + z * z));
	};

	float Length2(void) const  // squared distance, prior to square root.
	{
		float l2 = x * x + y * y + z * z;
		return l2;
	};

	float Distance(const Vector3d &a) const  // distance between two points.
	{
		Vector3d d(a.x - x, a.y - y, a.z - z);
		return d.Length();
	}

	float FastDistance(const Vector3d &a) const  // distance between two points.
	{
		Vector3d d(a.x - x, a.y - y, a.z - z);
		return d.FastLength();
	}

	float FasterDistance(const Vector3d &a) const  // distance between two points.
	{
		Vector3d d(a.x - x, a.y - y, a.z - z);
		return d.FasterLength();
	}

	float DistanceXY(const Vector3d &a) const
	{
		float dx = a.x - x;
		float dy = a.y - y;
		float dist = dx * dx + dy * dy;
		return dist;
	}

	float Distance2(const Vector3d &a) const  // squared distance.
	{
		float dx = a.x - x;
		float dy = a.y - y;
		float dz = a.z - z;
		return dx * dx + dy * dy + dz * dz;
	};

	float Partial(const Vector3d &p) const
	{
		return (x * p.y) - (p.x * y);
	}

	float Area(const Vector3d &p1, const Vector3d &p2) const
	{
		float A = Partial(p1);
		A += p1.Partial(p2);
		A += p2.Partial(*this);
		return A * 0.5f;
	}

	inline float Normalize(void)  // normalize to a unit vector, returns distance.
	{
		float d = sqrtf(static_cast<float>(x * x + y * y + z * z));
		if (d > 0)
		{
			float r = 1.0f / d;
			x *= r;
			y *= r;
			z *= r;
		}
		else
		{
			x = y = z = 1;
		}
		return d;
	};

	inline float FastNormalize(void)  // normalize to a unit vector, returns distance.
	{
		float d = sqrt(static_cast<float>(x * x + y * y + z * z));
		if (d > 0)
		{
			float r = 1.0f / d;
			x *= r;
			y *= r;
			z *= r;
		}
		else
		{
			x = y = z = 1;
		}
		return d;
	};

	inline float FasterNormalize(void)  // normalize to a unit vector, returns distance.
	{
		float d = sqrtf(static_cast<float>(x * x + y * y + z * z));
		if (d > 0)
		{
			float r = 1.0f / d;
			x *= r;
			y *= r;
			z *= r;
		}
		else
		{
			x = y = z = 1;
		}
		return d;
	};

	float Dot(const Vector3d &a) const  // computes dot product.
	{
		return (x * a.x + y * a.y + z * a.z);
	};

	Vector3d Cross(const Vector3d &other) const
	{
		Vector3d result(y * other.z - z * other.y, z * other.x - x * other.z, x * other.y - y * other.x);

		return result;
	}

	void Cross(const Vector3d &a, const Vector3d &b)  // cross two vectors result in this one.
	{
		x = a.y * b.z - a.z * b.y;
		y = a.z * b.x - a.x * b.z;
		z = a.x * b.y - a.y * b.x;
	};

	/******************************************/
	// Check if next edge (b to c) turns inward
	//
	//    Edge from a to b is already in face
	//    Edge from b to c is being considered for addition to face
	/******************************************/
	bool Concave(const Vector3d &a, const Vector3d &b)
	{
		float vx, vy, vz, wx, wy, wz, vw_x, vw_y, vw_z, mag, nx, ny, nz, mag_a, mag_b;

		wx = b.x - a.x;
		wy = b.y - a.y;
		wz = b.z - a.z;

		mag_a = (float)sqrtf((wx * wx) + (wy * wy) + (wz * wz));

		vx = x - b.x;
		vy = y - b.y;
		vz = z - b.z;

		mag_b = (float)sqrtf((vx * vx) + (vy * vy) + (vz * vz));

		vw_x = (vy * wz) - (vz * wy);
		vw_y = (vz * wx) - (vx * wz);
		vw_z = (vx * wy) - (vy * wx);

		mag = (float)sqrtf((vw_x * vw_x) + (vw_y * vw_y) + (vw_z * vw_z));

		// Check magnitude of cross product, which is a sine function
		// i.e., mag (a x b) = mag (a) * mag (b) * sin (theta);
		// If sin (theta) small, then angle between edges is very close to
		// 180, which we may want to call a concavity.	Setting the
		// CONCAVITY_TOLERANCE value greater than about 0.01 MAY cause
		// face consolidation to get stuck on particular face.	Most meshes
		// convert properly with a value of 0.0

		if (mag / (mag_a * mag_b) <= 0.0f) return true;

		mag = 1.0f / mag;

		nx = vw_x * mag;
		ny = vw_y * mag;
		nz = vw_z * mag;

		// Dot product of tri normal with cross product result will
		// yield positive number if edges are convex (+1.0 if two tris
		// are coplanar), negative number if edges are concave (-1.0 if
		// two tris are coplanar.)

		mag = (x * nx) + (y * ny) + (z * nz);

		if (mag > 0.0f) return false;

		return (true);
	};

	bool PointTestXY(const Vector3d &i, const Vector3d &j) const
	{
		if ((((i.y <= y) && (y < j.y)) ||
			 ((j.y <= y) && (y < i.y))) &&
			(x < (j.x - i.x) * (y - i.y) / (j.y - i.y) + i.x)) return true;
		return false;
	}

	// test to see if this point is inside the triangle specified by
	// these three points on the X/Y plane.
	bool PointInTriXY(const Vector3d &p1,
					  const Vector3d &p2,
					  const Vector3d &p3) const
	{
		float ax = p3.x - p2.x;
		float ay = p3.y - p2.y;
		float bx = p1.x - p3.x;
		float by = p1.y - p3.y;
		float cx = p2.x - p1.x;
		float cy = p2.y - p1.y;
		float apx = x - p1.x;
		float apy = y - p1.y;
		float bpx = x - p2.x;
		float bpy = y - p2.y;
		float cpx = x - p3.x;
		float cpy = y - p3.y;

		float aCROSSbp = ax * bpy - ay * bpx;
		float cCROSSap = cx * apy - cy * apx;
		float bCROSScp = bx * cpy - by * cpx;

		return ((aCROSSbp >= 0.0f) && (bCROSScp >= 0.0f) && (cCROSSap >= 0.0f));
	};

	// test to see if this point is inside the triangle specified by
	// these three points on the X/Y plane.
	bool PointInTriYZ(const Vector3d &p1,
					  const Vector3d &p2,
					  const Vector3d &p3) const
	{
		float ay = p3.y - p2.y;
		float az = p3.z - p2.z;
		float by = p1.y - p3.y;
		float bz = p1.z - p3.z;
		float cy = p2.y - p1.y;
		float cz = p2.z - p1.z;
		float apy = y - p1.y;
		float apz = z - p1.z;
		float bpy = y - p2.y;
		float bpz = z - p2.z;
		float cpy = y - p3.y;
		float cpz = z - p3.z;

		float aCROSSbp = ay * bpz - az * bpy;
		float cCROSSap = cy * apz - cz * apy;
		float bCROSScp = by * cpz - bz * cpy;

		return ((aCROSSbp >= 0.0f) && (bCROSScp >= 0.0f) && (cCROSSap >= 0.0f));
	};

	// test to see if this point is inside the triangle specified by
	// these three points on the X/Y plane.
	bool PointInTriXZ(const Vector3d &p1,
					  const Vector3d &p2,
					  const Vector3d &p3) const
	{
		float az = p3.z - p2.z;
		float ax = p3.x - p2.x;
		float bz = p1.z - p3.z;
		float bx = p1.x - p3.x;
		float cz = p2.z - p1.z;
		float cx = p2.x - p1.x;
		float apz = z - p1.z;
		float apx = x - p1.x;
		float bpz = z - p2.z;
		float bpx = x - p2.x;
		float cpz = z - p3.z;
		float cpx = x - p3.x;

		float aCROSSbp = az * bpx - ax * bpz;
		float cCROSSap = cz * apx - cx * apz;
		float bCROSScp = bz * cpx - bx * cpz;

		return ((aCROSSbp >= 0.0f) && (bCROSScp >= 0.0f) && (cCROSSap >= 0.0f));
	};

	// Given a point and a line (defined by two points), compute the closest point
	// in the line.  (The line is treated as infinitely long.)
	void NearestPointInLine(const Vector3d &point,
							const Vector3d &line0,
							const Vector3d &line1)
	{
		Vector3d &nearestPoint = *this;
		Vector3d lineDelta = line1 - line0;

		// Handle degenerate lines
		if (lineDelta == Vector3d(0, 0, 0))
		{
			nearestPoint = line0;
		}
		else
		{
			float delta = (point - line0).Dot(lineDelta) / (lineDelta).Dot(lineDelta);
			nearestPoint = line0 + lineDelta * delta;
		}
	}

	// Given a point and a line segment (defined by two points), compute the closest point
	// in the line.  Cap the point at the endpoints of the line segment.
	void NearestPointInLineSegment(const Vector3d &point,
								   const Vector3d &line0,
								   const Vector3d &line1)
	{
		Vector3d &nearestPoint = *this;
		Vector3d lineDelta = line1 - line0;

		// Handle degenerate lines
		if (lineDelta == Vector3d(0, 0, 0))
		{
			nearestPoint = line0;
		}
		else
		{
			float delta = (point - line0).Dot(lineDelta) / (lineDelta).Dot(lineDelta);

			// Clamp the point to conform to the segment's endpoints
			if (delta < 0)
				delta = 0;
			else if (delta > 1)
				delta = 1;

			nearestPoint = line0 + lineDelta * delta;
		}
	}

	// Given a point and a plane (defined by three points), compute the closest point
	// in the plane.  (The plane is unbounded.)
	void NearestPointInPlane(const Vector3d &point,
							 const Vector3d &triangle0,
							 const Vector3d &triangle1,
							 const Vector3d &triangle2)
	{
		Vector3d &nearestPoint = *this;
		Vector3d lineDelta0 = triangle1 - triangle0;
		Vector3d lineDelta1 = triangle2 - triangle0;
		Vector3d pointDelta = point - triangle0;
		Vector3d normal;

		// Get the normal of the polygon (doesn't have to be a unit vector)
		normal.Cross(lineDelta0, lineDelta1);

		float delta = normal.Dot(pointDelta) / normal.Dot(normal);
		nearestPoint = point - normal * delta;
	}

	// Given a point and a plane (defined by a coplanar point and a normal), compute the closest point
	// in the plane.  (The plane is unbounded.)
	void NearestPointInPlane(const Vector3d &point,
							 const Vector3d &planePoint,
							 const Vector3d &planeNormal)
	{
		Vector3d &nearestPoint = *this;
		Vector3d pointDelta = point - planePoint;

		float delta = planeNormal.Dot(pointDelta) / planeNormal.Dot(planeNormal);
		nearestPoint = point - planeNormal * delta;
	}

	// Given a point and a triangle (defined by three points), compute the closest point
	// in the triangle.  Clamp the point so it's confined to the area of the triangle.
	void NearestPointInTriangle(const Vector3d &point,
								const Vector3d &triangle0,
								const Vector3d &triangle1,
								const Vector3d &triangle2)
	{
		static const Vector3d zeroVector(0, 0, 0);

		Vector3d &nearestPoint = *this;

		Vector3d lineDelta0 = triangle1 - triangle0;
		Vector3d lineDelta1 = triangle2 - triangle0;

		// Handle degenerate triangles
		if ((lineDelta0 == zeroVector) || (lineDelta1 == zeroVector))
		{
			nearestPoint.NearestPointInLineSegment(point, triangle1, triangle2);
		}
		else if (lineDelta0 == lineDelta1)
		{
			nearestPoint.NearestPointInLineSegment(point, triangle0, triangle1);
		}

		else
		{
			Vector3d axis[3];
			axis[0].NearestPointInLine(triangle0, triangle1, triangle2);
			axis[1].NearestPointInLine(triangle1, triangle0, triangle2);
			axis[2].NearestPointInLine(triangle2, triangle0, triangle1);

			float axisDot[3];
			axisDot[0] = (triangle0 - axis[0]).Dot(point - axis[0]);
			axisDot[1] = (triangle1 - axis[1]).Dot(point - axis[1]);
			axisDot[2] = (triangle2 - axis[2]).Dot(point - axis[2]);

			bool bForce = true;
			float bestMagnitude2 = 0;
			float closeMagnitude2;
			Vector3d closePoint;

			if (axisDot[0] < 0)
			{
				closePoint.NearestPointInLineSegment(point, triangle1, triangle2);
				closeMagnitude2 = point.Distance2(closePoint);
				if (bForce || (bestMagnitude2 > closeMagnitude2))
				{
					bForce = false;
					bestMagnitude2 = closeMagnitude2;
					nearestPoint = closePoint;
				}
			}
			if (axisDot[1] < 0)
			{
				closePoint.NearestPointInLineSegment(point, triangle0, triangle2);
				closeMagnitude2 = point.Distance2(closePoint);
				if (bForce || (bestMagnitude2 > closeMagnitude2))
				{
					bForce = false;
					bestMagnitude2 = closeMagnitude2;
					nearestPoint = closePoint;
				}
			}
			if (axisDot[2] < 0)
			{
				closePoint.NearestPointInLineSegment(point, triangle0, triangle1);
				closeMagnitude2 = point.Distance2(closePoint);
				if (bForce || (bestMagnitude2 > closeMagnitude2))
				{
					bForce = false;
					bestMagnitude2 = closeMagnitude2;
					nearestPoint = closePoint;
				}
			}

			// If bForce is true at this point, it means the nearest point lies
			// inside the triangle; use the nearest-point-on-a-plane equation
			if (bForce)
			{
				Vector3d normal;

				// Get the normal of the polygon (doesn't have to be a unit vector)
				normal.Cross(lineDelta0, lineDelta1);

				Vector3d pointDelta = point - triangle0;
				float delta = normal.Dot(pointDelta) / normal.Dot(normal);

				nearestPoint = point - normal * delta;
			}
		}
	}

	//private:

	float x;
	float y;
	float z;
};

class Vector2d
{
public:
	Vector2d(void){};  // null constructor, does not inialize point.

	Vector2d(const Vector2d &a)  // constructor copies existing vector.
	{
		x = a.x;
		y = a.y;
	};

	Vector2d(const float *t)
	{
		x = t[0];
		y = t[1];
	};

	Vector2d(float a, float b)  // construct with initial point.
	{
		x = a;
		y = b;
	};

	const float *Ptr() const { return &x; }
	float *Ptr() { return &x; }

	Vector2d &operator+=(const Vector2d &a)  // += operator.
	{
		x += a.x;
		y += a.y;
		return *this;
	};

	Vector2d &operator-=(const Vector2d &a)
	{
		x -= a.x;
		y -= a.y;
		return *this;
	};

	Vector2d &operator*=(const Vector2d &a)
	{
		x *= a.x;
		y *= a.y;
		return *this;
	};

	Vector2d &operator/=(const Vector2d &a)
	{
		x /= a.x;
		y /= a.y;
		return *this;
	};

	bool operator==(const Vector2d &a) const
	{
		if (a.x == x && a.y == y) return true;
		return false;
	};

	bool operator!=(const Vector2d &a) const
	{
		if (a.x != x || a.y != y) return true;
		return false;
	};

	Vector2d operator+(Vector2d a) const
	{
		a.x += x;
		a.y += y;
		return a;
	};

	Vector2d operator-(Vector2d a) const
	{
		a.x = x - a.x;
		a.y = y - a.y;
		return a;
	};

	Vector2d operator-(void) const
	{
		return negative();
	};

	Vector2d operator*(Vector2d a) const
	{
		a.x *= x;
		a.y *= y;
		return a;
	};

	Vector2d operator*(float c) const
	{
		Vector2d a;

		a.x = x * c;
		a.y = y * c;

		return a;
	};

	Vector2d operator/(Vector2d a) const
	{
		a.x = x / a.x;
		a.y = y / a.y;
		return a;
	};

	float Dot(const Vector2d &a) const  // computes dot product.
	{
		return (x * a.x + y * a.y);
	};

	float GetX(void) const { return x; };
	float GetY(void) const { return y; };

	void SetX(float t) { x = t; };
	void SetY(float t) { y = t; };

	void Set(float a, float b)
	{
		x = a;
		y = b;
	};

	void Zero(void)
	{
		x = y = 0;
	};

	Vector2d negative(void) const
	{
		Vector2d result;
		result.x = -x;
		result.y = -y;
		return result;
	}

	float magnitude(void) const
	{
		return (float)sqrtf(x * x + y * y);
	}

	float fastmagnitude(void) const
	{
		return (float)sqrtf(x * x + y * y);
	}

	float fastermagnitude(void) const
	{
		return (float)sqrtf(x * x + y * y);
	}

	void Reflection(Vector2d &a, Vector2d &b);  // compute reflection vector.

	float Length(void) const  // length of vector.
	{
		return float(sqrtf(x * x + y * y));
	};

	float FastLength(void) const  // length of vector.
	{
		return float(sqrtf(x * x + y * y));
	};

	float FasterLength(void) const  // length of vector.
	{
		return float(sqrtf(x * x + y * y));
	};

	float Length2(void)  // squared distance, prior to square root.
	{
		return x * x + y * y;
	}

	float Distance(const Vector2d &a) const  // distance between two points.
	{
		float dx = a.x - x;
		float dy = a.y - y;
		float d = dx * dx + dy * dy;
		return sqrtf(d);
	};

	float FastDistance(const Vector2d &a) const  // distance between two points.
	{
		float dx = a.x - x;
		float dy = a.y - y;
		float d = dx * dx + dy * dy;
		return sqrtf(d);
	};

	float FasterDistance(const Vector2d &a) const  // distance between two points.
	{
		float dx = a.x - x;
		float dy = a.y - y;
		float d = dx * dx + dy * dy;
		return sqrtf(d);
	};

	float Distance2(Vector2d &a)  // squared distance.
	{
		float dx = a.x - x;
		float dy = a.y - y;
		return dx * dx + dy * dy;
	};

	void Lerp(const Vector2d &from, const Vector2d &to, float slerp)
	{
		x = ((to.x - from.x) * slerp) + from.x;
		y = ((to.y - from.y) * slerp) + from.y;
	};

	void Cross(const Vector2d &a, const Vector2d &b)  // cross two vectors result in this one.
	{
		x = a.y * b.x - a.x * b.y;
		y = a.x * b.x - a.x * b.x;
	};

	float Normalize(void)  // normalize to a unit vector, returns distance.
	{
		float l = Length();
		if (l != 0)
		{
			l = float(1) / l;
			x *= l;
			y *= l;
		}
		else
		{
			x = y = 0;
		}
		return l;
	};

	float FastNormalize(void)  // normalize to a unit vector, returns distance.
	{
		float l = FastLength();
		if (l != 0)
		{
			l = float(1) / l;
			x *= l;
			y *= l;
		}
		else
		{
			x = y = 0;
		}
		return l;
	};

	float FasterNormalize(void)  // normalize to a unit vector, returns distance.
	{
		float l = FasterLength();
		if (l != 0)
		{
			l = float(1) / l;
			x *= l;
			y *= l;
		}
		else
		{
			x = y = 0;
		}
		return l;
	};

	float x;
	float y;
};

class Line
{
public:
	Line(const Vector3d &from, const Vector3d &to)
	{
		mP1 = from;
		mP2 = to;
	};
	// JWR  Test for the intersection of two lines.

	bool Intersect(const Line &src, Vector3d &sect);

private:
	Vector3d mP1;
	Vector3d mP2;
};

typedef std::vector<Vector3d> Vector3dVector;
typedef std::vector<Vector2d> Vector2dVector;

inline Vector3d operator*(float s, const Vector3d &v)
{
	Vector3d Scaled(v.x * s, v.y * s, v.z * s);
	return (Scaled);
}

inline Vector2d operator*(float s, const Vector2d &v)
{
	Vector2d Scaled(v.x * s, v.y * s);
	return (Scaled);
}

}  // namespace ConvexDecomposition

#endif