File: BulletDataExtractor.cpp

package info (click to toggle)
bullet 3.06%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 15,012 kB
  • sloc: cpp: 243,705; lisp: 12,017; ansic: 11,175; python: 626; makefile: 133; sh: 75
file content (339 lines) | stat: -rw-r--r-- 9,757 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

#include "BulletDataExtractor.h"
#include "../BulletFileLoader/btBulletFile.h"

#include <stdio.h>

///work-in-progress
///This ReadBulletSample is kept as simple as possible without dependencies to the Bullet SDK.
///It can be used to load .bullet data for other physics SDKs
///For a more complete example how to load and convert Bullet data using the Bullet SDK check out
///the Bullet/Demos/SerializeDemo and Bullet/Serialize/BulletWorldImporter

using namespace Bullet;

enum LocalBroadphaseNativeTypes
{
	// polyhedral convex shapes
	BOX_SHAPE_PROXYTYPE,
	TRIANGLE_SHAPE_PROXYTYPE,
	TETRAHEDRAL_SHAPE_PROXYTYPE,
	CONVEX_TRIANGLEMESH_SHAPE_PROXYTYPE,
	CONVEX_HULL_SHAPE_PROXYTYPE,
	CONVEX_POINT_CLOUD_SHAPE_PROXYTYPE,
	CUSTOM_POLYHEDRAL_SHAPE_TYPE,
	//implicit convex shapes
	IMPLICIT_CONVEX_SHAPES_START_HERE,
	SPHERE_SHAPE_PROXYTYPE,
	MULTI_SPHERE_SHAPE_PROXYTYPE,
	CAPSULE_SHAPE_PROXYTYPE,
	CONE_SHAPE_PROXYTYPE,
	CONVEX_SHAPE_PROXYTYPE,
	CYLINDER_SHAPE_PROXYTYPE,
	UNIFORM_SCALING_SHAPE_PROXYTYPE,
	MINKOWSKI_SUM_SHAPE_PROXYTYPE,
	MINKOWSKI_DIFFERENCE_SHAPE_PROXYTYPE,
	BOX_2D_SHAPE_PROXYTYPE,
	CONVEX_2D_SHAPE_PROXYTYPE,
	CUSTOM_CONVEX_SHAPE_TYPE,
	//concave shapes
	CONCAVE_SHAPES_START_HERE,
	//keep all the convex shapetype below here, for the check IsConvexShape in broadphase proxy!
	TRIANGLE_MESH_SHAPE_PROXYTYPE,
	SCALED_TRIANGLE_MESH_SHAPE_PROXYTYPE,
	///used for demo integration FAST/Swift collision library and Bullet
	FAST_CONCAVE_MESH_PROXYTYPE,
	//terrain
	TERRAIN_SHAPE_PROXYTYPE,
	///Used for GIMPACT Trimesh integration
	GIMPACT_SHAPE_PROXYTYPE,
	///Multimaterial mesh
	MULTIMATERIAL_TRIANGLE_MESH_PROXYTYPE,

	EMPTY_SHAPE_PROXYTYPE,
	STATIC_PLANE_PROXYTYPE,
	CUSTOM_CONCAVE_SHAPE_TYPE,
	CONCAVE_SHAPES_END_HERE,

	COMPOUND_SHAPE_PROXYTYPE,

	SOFTBODY_SHAPE_PROXYTYPE,
	HFFLUID_SHAPE_PROXYTYPE,
	HFFLUID_BUOYANT_CONVEX_SHAPE_PROXYTYPE,
	INVALID_SHAPE_PROXYTYPE,

	MAX_BROADPHASE_COLLISION_TYPES

};

btBulletDataExtractor::btBulletDataExtractor()
{
}

btBulletDataExtractor::~btBulletDataExtractor()
{
}

void btBulletDataExtractor::convertAllObjects(bParse::btBulletFile* bulletFile2)
{
	int i;

	for (i = 0; i < bulletFile2->m_collisionShapes.size(); i++)
	{
		btCollisionShapeData* shapeData = (btCollisionShapeData*)bulletFile2->m_collisionShapes[i];
		if (shapeData->m_name)
			printf("converting shape %s\n", shapeData->m_name);
		void* shape = convertCollisionShape(shapeData);
	}
}

void* btBulletDataExtractor::convertCollisionShape(btCollisionShapeData* shapeData)
{
	void* shape = 0;

	switch (shapeData->m_shapeType)
	{
		case STATIC_PLANE_PROXYTYPE:
		{
			btStaticPlaneShapeData* planeData = (btStaticPlaneShapeData*)shapeData;
			void* shape = createPlaneShape(planeData->m_planeNormal, planeData->m_planeConstant, planeData->m_localScaling);
			break;
		}

		case CYLINDER_SHAPE_PROXYTYPE:
		case CAPSULE_SHAPE_PROXYTYPE:
		case BOX_SHAPE_PROXYTYPE:
		case SPHERE_SHAPE_PROXYTYPE:
		case MULTI_SPHERE_SHAPE_PROXYTYPE:
		case CONVEX_HULL_SHAPE_PROXYTYPE:
		{
			btConvexInternalShapeData* bsd = (btConvexInternalShapeData*)shapeData;

			switch (shapeData->m_shapeType)
			{
				case BOX_SHAPE_PROXYTYPE:
				{
					shape = createBoxShape(bsd->m_implicitShapeDimensions, bsd->m_localScaling, bsd->m_collisionMargin);
					break;
				}
				case SPHERE_SHAPE_PROXYTYPE:
				{
					shape = createSphereShape(bsd->m_implicitShapeDimensions.m_floats[0], bsd->m_localScaling, bsd->m_collisionMargin);
					break;
				}
#if 0
					case CAPSULE_SHAPE_PROXYTYPE:
						{
							btCapsuleShapeData* capData = (btCapsuleShapeData*)shapeData;
							switch (capData->m_upAxis)
							{
							case 0:
								{
									shape = createCapsuleShapeX(implicitShapeDimensions.getY(),2*implicitShapeDimensions.getX());
									break;
								}
							case 1:
								{
									shape = createCapsuleShapeY(implicitShapeDimensions.getX(),2*implicitShapeDimensions.getY());
									break;
								}
							case 2:
								{
									shape = createCapsuleShapeZ(implicitShapeDimensions.getX(),2*implicitShapeDimensions.getZ());
									break;
								}
							default:
								{
									printf("error: wrong up axis for btCapsuleShape\n");
								}

							};
							
							break;
						}
					case CYLINDER_SHAPE_PROXYTYPE:
						{
							btCylinderShapeData* cylData = (btCylinderShapeData*) shapeData;
							btVector3 halfExtents = implicitShapeDimensions+margin;
							switch (cylData->m_upAxis)
							{
							case 0:
								{
									shape = createCylinderShapeX(halfExtents.getY(),halfExtents.getX());
									break;
								}
							case 1:
								{
									shape = createCylinderShapeY(halfExtents.getX(),halfExtents.getY());
									break;
								}
							case 2:
								{
									shape = createCylinderShapeZ(halfExtents.getX(),halfExtents.getZ());
									break;
								}
							default:
								{
									printf("unknown Cylinder up axis\n");
								}

							};
							

							
							break;
						}
					case MULTI_SPHERE_SHAPE_PROXYTYPE:
						{
							btMultiSphereShapeData* mss = (btMultiSphereShapeData*)bsd;
							int numSpheres = mss->m_localPositionArraySize;
							int i;
							for ( i=0;i<numSpheres;i++)
							{
								tmpPos[i].deSerializeFloat(mss->m_localPositionArrayPtr[i].m_pos);
								radii[i] = mss->m_localPositionArrayPtr[i].m_radius;
							}
							shape = new btMultiSphereShape(&tmpPos[0],&radii[0],numSpheres);
							break;
						}
					case CONVEX_HULL_SHAPE_PROXYTYPE:
						{
							btConvexHullShapeData* convexData = (btConvexHullShapeData*)bsd;
							int numPoints = convexData->m_numUnscaledPoints;

							btAlignedObjectArray<btVector3> tmpPoints;
							tmpPoints.resize(numPoints);
							int i;
							for ( i=0;i<numPoints;i++)
							{
							if (convexData->m_unscaledPointsFloatPtr)
								tmpPoints[i].deSerialize(convexData->m_unscaledPointsFloatPtr[i]);
							if (convexData->m_unscaledPointsDoublePtr)
								tmpPoints[i].deSerializeDouble(convexData->m_unscaledPointsDoublePtr[i]);
							}
							shape = createConvexHullShape();

							return shape;
							break;
						}
#endif

				default:
				{
					printf("error: cannot create shape type (%d)\n", shapeData->m_shapeType);
				}
			}

			break;
		}
#if 0
		case TRIANGLE_MESH_SHAPE_PROXYTYPE:
		{
			btTriangleMeshShapeData* trimesh = (btTriangleMeshShapeData*)shapeData;
			btTriangleIndexVertexArray* meshInterface = createMeshInterface(trimesh->m_meshInterface);
			if (!meshInterface->getNumSubParts())
			{
				return 0;
			}

			btVector3 scaling; scaling.deSerializeFloat(trimesh->m_meshInterface.m_scaling);
			meshInterface->setScaling(scaling);


			btOptimizedBvh* bvh = 0;

			btBvhTriangleMeshShape* trimeshShape = createBvhTriangleMeshShape(meshInterface,bvh);
			trimeshShape->setMargin(trimesh->m_collisionMargin);
			shape = trimeshShape;

			if (trimesh->m_triangleInfoMap)
			{
				btTriangleInfoMap* map = createTriangleInfoMap();
				map->deSerialize(*trimesh->m_triangleInfoMap);
				trimeshShape->setTriangleInfoMap(map);

#ifdef USE_INTERNAL_EDGE_UTILITY
				gContactAddedCallback = btAdjustInternalEdgeContactsCallback;
#endif  //USE_INTERNAL_EDGE_UTILITY

			}

			//printf("trimesh->m_collisionMargin=%f\n",trimesh->m_collisionMargin);
			break;
		}
		case COMPOUND_SHAPE_PROXYTYPE:
			{
				btCompoundShapeData* compoundData = (btCompoundShapeData*)shapeData;
				btCompoundShape* compoundShape = createCompoundShape();


				btAlignedObjectArray<btCollisionShape*> childShapes;
				for (int i=0;i<compoundData->m_numChildShapes;i++)
				{
					btCollisionShape* childShape = convertCollisionShape(compoundData->m_childShapePtr[i].m_childShape);
					if (childShape)
					{
						btTransform localTransform;
						localTransform.deSerializeFloat(compoundData->m_childShapePtr[i].m_transform);
						compoundShape->addChildShape(localTransform,childShape);
					} else
					{
						printf("error: couldn't create childShape for compoundShape\n");
					}
					
				}
				shape = compoundShape;

				break;
			}

			case GIMPACT_SHAPE_PROXYTYPE:
		{
			btGImpactMeshShapeData* gimpactData = (btGImpactMeshShapeData*) shapeData;
			if (gimpactData->m_gimpactSubType == CONST_GIMPACT_TRIMESH_SHAPE)
			{
				btTriangleIndexVertexArray* meshInterface = createMeshInterface(gimpactData->m_meshInterface);
				btGImpactMeshShape* gimpactShape = createGimpactShape(meshInterface);
				btVector3 localScaling;
				localScaling.deSerializeFloat(gimpactData->m_localScaling);
				gimpactShape->setLocalScaling(localScaling);
				gimpactShape->setMargin(btScalar(gimpactData->m_collisionMargin));
				gimpactShape->updateBound();
				shape = gimpactShape;
			} else
			{
				printf("unsupported gimpact sub type\n");
			}
			break;
		}
		case SOFTBODY_SHAPE_PROXYTYPE:
			{
				return 0;
			}
#endif
		default:
		{
			printf("unsupported shape type (%d)\n", shapeData->m_shapeType);
		}
	}

	return shape;
}

void* btBulletDataExtractor::createBoxShape(const Bullet::btVector3FloatData& halfDimensions, const Bullet::btVector3FloatData& localScaling, float collisionMargin)
{
	printf("createBoxShape with halfDimensions %f,%f,%f\n", halfDimensions.m_floats[0], halfDimensions.m_floats[1], halfDimensions.m_floats[2]);
	return 0;
}

void* btBulletDataExtractor::createSphereShape(float radius, const Bullet::btVector3FloatData& localScaling, float collisionMargin)
{
	printf("createSphereShape with radius %f\n", radius);
	return 0;
}

void* btBulletDataExtractor::createPlaneShape(const btVector3FloatData& planeNormal, float planeConstant, const Bullet::btVector3FloatData& localScaling)
{
	printf("createPlaneShape with normal %f,%f,%f and planeConstant\n", planeNormal.m_floats[0], planeNormal.m_floats[1], planeNormal.m_floats[2], planeConstant);
	return 0;
}