1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
//
// Test_qtdot.cpp
// BulletTest
//
// Copyright (c) 2011 Apple Inc.
//
#include "LinearMath/btScalar.h"
#if defined(BT_USE_SSE_IN_API) || defined(BT_USE_NEON)
#include "Test_qtdot.h"
#include "vector.h"
#include "Utils.h"
#include "main.h"
#include <math.h>
#include <string.h>
#include <LinearMath/btQuaternion.h>
#define BT_OP(a, b) (a.dot(b))
// reference code for testing purposes
static inline btScalar qtdot_ref(btQuaternion& q1, btQuaternion& q2);
static inline btScalar qtdot_ref(btQuaternion& q1, btQuaternion& q2)
{
return q1.x() * q2.x() +
q1.y() * q2.y() +
q1.z() * q2.z() +
q1.w() * q2.w();
}
#define LOOPCOUNT 1024
#define NUM_CYCLES 1000
int Test_qtdot(void)
{
btQuaternion q1, q2;
float x, y, z, w, vNaN;
vNaN = BT_NAN; // w channel NaN
// Init the data
x = RANDF_01;
y = RANDF_01;
z = RANDF_01;
w = RANDF_01;
q1.setValue(x, y, z, w);
x = RANDF_01;
y = RANDF_01;
z = RANDF_01;
w = RANDF_01;
q2.setValue(x, y, z, w);
btScalar correct_res, test_res;
{
correct_res = vNaN;
test_res = vNaN;
correct_res = qtdot_ref(q1, q2);
test_res = BT_OP(q1, q2);
if (fabsf(correct_res - test_res) > FLT_EPSILON * 4)
{
vlog(
"Error - qtdot result error! "
"\ncorrect = %10.4f "
"\ntested = %10.4f \n",
correct_res, test_res);
return 1;
}
}
#define DATA_SIZE LOOPCOUNT
btQuaternion qt_arr1[DATA_SIZE];
btQuaternion qt_arr2[DATA_SIZE];
btScalar res_arr[DATA_SIZE];
uint64_t scalarTime;
uint64_t vectorTime;
size_t j, k;
for (k = 0; k < DATA_SIZE; k++)
{
x = RANDF_01;
y = RANDF_01;
z = RANDF_01;
w = RANDF_01;
qt_arr1[k].setValue(x, y, z, w);
x = RANDF_01;
y = RANDF_01;
z = RANDF_01;
w = RANDF_01;
qt_arr2[k].setValue(x, y, z, w);
}
{
uint64_t startTime, bestTime, currentTime;
bestTime = -1LL;
scalarTime = 0;
for (j = 0; j < NUM_CYCLES; j++)
{
startTime = ReadTicks();
for (k = 0; k + 4 <= LOOPCOUNT; k += 4)
{
size_t km = (k & (DATA_SIZE - 1));
res_arr[km] = qtdot_ref(qt_arr1[km], qt_arr2[km]);
km++;
res_arr[km] = qtdot_ref(qt_arr1[km], qt_arr2[km]);
km++;
res_arr[km] = qtdot_ref(qt_arr1[km], qt_arr2[km]);
km++;
res_arr[km] = qtdot_ref(qt_arr1[km], qt_arr2[km]);
}
currentTime = ReadTicks() - startTime;
scalarTime += currentTime;
if (currentTime < bestTime)
bestTime = currentTime;
}
if (0 == gReportAverageTimes)
scalarTime = bestTime;
else
scalarTime /= NUM_CYCLES;
}
{
uint64_t startTime, bestTime, currentTime;
bestTime = -1LL;
vectorTime = 0;
for (j = 0; j < NUM_CYCLES; j++)
{
startTime = ReadTicks();
for (k = 0; k + 4 <= LOOPCOUNT; k += 4)
{
size_t km = (k & (DATA_SIZE - 1));
res_arr[km] = BT_OP(qt_arr1[km], qt_arr2[km]);
km++;
res_arr[km] = BT_OP(qt_arr1[km], qt_arr2[km]);
km++;
res_arr[km] = BT_OP(qt_arr1[km], qt_arr2[km]);
km++;
res_arr[km] = BT_OP(qt_arr1[km], qt_arr2[km]);
km++;
}
currentTime = ReadTicks() - startTime;
vectorTime += currentTime;
if (currentTime < bestTime)
bestTime = currentTime;
}
if (0 == gReportAverageTimes)
vectorTime = bestTime;
else
vectorTime /= NUM_CYCLES;
}
vlog("Timing:\n");
vlog(" \t scalar\t vector\n");
vlog(" \t%10.4f\t%10.4f\n", TicksToCycles(scalarTime) / LOOPCOUNT,
TicksToCycles(vectorTime) / LOOPCOUNT);
return 0;
}
#endif //BT_USE_SSE
|