1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
//
// Test_qtnorm.cpp
// BulletTest
//
// Copyright (c) 2011 Apple Inc.
//
#include "LinearMath/btScalar.h"
#if defined(BT_USE_SSE_IN_API) || defined(BT_USE_NEON)
#include "Test_qtnorm.h"
#include "vector.h"
#include "Utils.h"
#include "main.h"
#include <math.h>
#include <string.h>
#include <LinearMath/btQuaternion.h>
#define BT_OP(a) (a.normalize())
// reference code for testing purposes
static inline btQuaternion& qtnorm_ref(btQuaternion& q1);
static inline btQuaternion& qtnorm_ref(btQuaternion& q1)
{
float dot =
q1.x() * q1.x() +
q1.y() * q1.y() +
q1.z() * q1.z() +
q1.w() * q1.w();
dot = 1.0f / sqrtf(dot);
q1.setValue(q1.x() * dot, q1.y() * dot, q1.z() * dot, q1.w() * dot);
return q1;
}
#define LOOPCOUNT 1024
#define NUM_CYCLES 1000
int Test_qtnorm(void)
{
int i;
btQuaternion q1, q2;
float x, y, z, w, vNaN;
vNaN = BT_NAN; // w channel NaN
btQuaternion correct_res, test_res;
for (i = 0; i < LOOPCOUNT; i++)
{
// Init the data
x = RANDF_01;
y = RANDF_01;
z = RANDF_01;
w = RANDF_01;
q1.setValue(x, y, z, w);
q2 = q1;
correct_res.setValue(vNaN, vNaN, vNaN, vNaN);
test_res.setValue(vNaN, vNaN, vNaN, vNaN);
correct_res = qtnorm_ref(q1);
test_res = BT_OP(q2);
if (fabsf(correct_res.x() - test_res.x()) +
fabsf(correct_res.y() - test_res.y()) +
fabsf(correct_res.z() - test_res.z()) +
fabsf(correct_res.w() - test_res.w()) >
FLT_EPSILON * 10)
{
vlog(
"Error - qtnorm result error! "
"\ncorrect = (%10.7f, %10.7f, %10.7f, %10.7f) "
"\ntested = (%10.7f, %10.7f, %10.7f, %10.7f) \n",
correct_res.x(), correct_res.y(),
correct_res.z(), correct_res.w(),
test_res.x(), test_res.y(),
test_res.z(), test_res.w());
return 1;
}
}
#define DATA_SIZE LOOPCOUNT
btQuaternion qt_arr0[DATA_SIZE];
btQuaternion qt_arr1[DATA_SIZE];
uint64_t scalarTime;
uint64_t vectorTime;
size_t j, k;
{
uint64_t startTime, bestTime, currentTime;
bestTime = -1LL;
scalarTime = 0;
for (j = 0; j < NUM_CYCLES; j++)
{
for (k = 0; k < DATA_SIZE; k++)
{
x = RANDF_01;
y = RANDF_01;
z = RANDF_01;
w = RANDF_01;
qt_arr1[k].setValue(x, y, z, w);
}
startTime = ReadTicks();
for (k = 0; k + 4 <= LOOPCOUNT; k += 4)
{
size_t km = (k & (DATA_SIZE - 1));
qt_arr0[km] = qtnorm_ref(qt_arr1[km]);
km++;
qt_arr0[km] = qtnorm_ref(qt_arr1[km]);
km++;
qt_arr0[km] = qtnorm_ref(qt_arr1[km]);
km++;
qt_arr0[km] = qtnorm_ref(qt_arr1[km]);
}
currentTime = ReadTicks() - startTime;
scalarTime += currentTime;
if (currentTime < bestTime)
bestTime = currentTime;
}
if (0 == gReportAverageTimes)
scalarTime = bestTime;
else
scalarTime /= NUM_CYCLES;
}
{
uint64_t startTime, bestTime, currentTime;
bestTime = -1LL;
vectorTime = 0;
for (j = 0; j < NUM_CYCLES; j++)
{
for (k = 0; k < DATA_SIZE; k++)
{
x = RANDF_01;
y = RANDF_01;
z = RANDF_01;
w = RANDF_01;
qt_arr1[k].setValue(x, y, z, w);
}
startTime = ReadTicks();
for (k = 0; k + 4 <= LOOPCOUNT; k += 4)
{
size_t km = (k & (DATA_SIZE - 1));
qt_arr0[km] = BT_OP(qt_arr1[km]);
km++;
qt_arr0[km] = BT_OP(qt_arr1[km]);
km++;
qt_arr0[km] = BT_OP(qt_arr1[km]);
km++;
qt_arr0[km] = BT_OP(qt_arr1[km]);
km++;
}
currentTime = ReadTicks() - startTime;
vectorTime += currentTime;
if (currentTime < bestTime)
bestTime = currentTime;
}
if (0 == gReportAverageTimes)
vectorTime = bestTime;
else
vectorTime /= NUM_CYCLES;
}
vlog("Timing:\n");
vlog(" \t scalar\t vector\n");
vlog(" \t%10.4f\t%10.4f\n", TicksToCycles(scalarTime) / LOOPCOUNT,
TicksToCycles(vectorTime) / LOOPCOUNT);
return 0;
}
#endif //BT_USE_SSE
|