1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
//
// Test_v3dot.cpp
// BulletTest
//
// Copyright (c) 2011 Apple Inc.
//
#include "LinearMath/btScalar.h"
#if defined(BT_USE_SSE_IN_API) || defined(BT_USE_NEON)
#include "Test_v3dot.h"
#include "vector.h"
#include "Utils.h"
#include "main.h"
#include <math.h>
#include <string.h>
#include <LinearMath/btVector3.h>
// reference code for testing purposes
static inline btScalar v3dot_ref(
const btVector3& v1,
const btVector3& v2);
#define LOOPCOUNT 1000
#define NUM_CYCLES 10000
int Test_v3dot(void)
{
btVector3 v1, v2;
float x, y, z, w;
// Init the data
x = RANDF_01;
y = RANDF_01;
z = RANDF_01;
w = BT_NAN; // w channel NaN
v1.setValue(x, y, z);
v1.setW(w);
x = RANDF_01;
y = RANDF_01;
z = RANDF_01;
v2.setValue(x, y, z);
v2.setW(w);
float correctDot0, testDot0;
{
correctDot0 = w;
testDot0 = w;
;
correctDot0 = v3dot_ref(v1, v2);
testDot0 = v1.dot(v2);
if (fabsf(correctDot0 - testDot0) > FLT_EPSILON * 4)
{
vlog("Error - v3dot result error! %f != %f \n", correctDot0, testDot0);
return 1;
}
}
#define DATA_SIZE 1024
btVector3 vec3_arr1[DATA_SIZE];
btVector3 vec3_arr2[DATA_SIZE];
btScalar res_arr[DATA_SIZE];
uint64_t scalarTime;
uint64_t vectorTime;
size_t j, k;
for (k = 0; k < DATA_SIZE; k++)
{
x = RANDF_01;
y = RANDF_01;
z = RANDF_01;
vec3_arr1[k].setValue(x, y, z);
vec3_arr1[k].setW(w);
x = RANDF_01;
y = RANDF_01;
z = RANDF_01;
vec3_arr2[k].setValue(x, y, z);
vec3_arr2[k].setW(w);
res_arr[k] = w;
}
{
uint64_t startTime, bestTime, currentTime;
bestTime = -1LL;
scalarTime = 0;
for (j = 0; j < NUM_CYCLES; j++)
{
startTime = ReadTicks();
for (k = 0; k + 4 <= LOOPCOUNT; k += 4)
{
size_t k32 = (k & (DATA_SIZE - 1));
res_arr[k32] = v3dot_ref(vec3_arr1[k32], vec3_arr2[k32]);
k32++;
res_arr[k32] = v3dot_ref(vec3_arr1[k32], vec3_arr2[k32]);
k32++;
res_arr[k32] = v3dot_ref(vec3_arr1[k32], vec3_arr2[k32]);
k32++;
res_arr[k32] = v3dot_ref(vec3_arr1[k32], vec3_arr2[k32]);
}
currentTime = ReadTicks() - startTime;
scalarTime += currentTime;
if (currentTime < bestTime)
bestTime = currentTime;
}
if (0 == gReportAverageTimes)
scalarTime = bestTime;
else
scalarTime /= NUM_CYCLES;
}
{
uint64_t startTime, bestTime, currentTime;
bestTime = -1LL;
vectorTime = 0;
for (j = 0; j < NUM_CYCLES; j++)
{
startTime = ReadTicks();
for (k = 0; k + 4 <= LOOPCOUNT; k += 4)
{
size_t k32 = k & (DATA_SIZE - 1);
res_arr[k32] = vec3_arr1[k32].dot(vec3_arr2[k32]);
k32++;
res_arr[k32] = vec3_arr1[k32].dot(vec3_arr2[k32]);
k32++;
res_arr[k32] = vec3_arr1[k32].dot(vec3_arr2[k32]);
k32++;
res_arr[k32] = vec3_arr1[k32].dot(vec3_arr2[k32]);
}
currentTime = ReadTicks() - startTime;
vectorTime += currentTime;
if (currentTime < bestTime)
bestTime = currentTime;
}
if (0 == gReportAverageTimes)
vectorTime = bestTime;
else
vectorTime /= NUM_CYCLES;
}
vlog("Timing:\n");
vlog(" \t scalar\t vector\n");
vlog(" \t%10.4f\t%10.4f\n", TicksToCycles(scalarTime) / LOOPCOUNT, TicksToCycles(vectorTime) / LOOPCOUNT);
return 0;
}
static btScalar v3dot_ref(const btVector3& v1,
const btVector3& v2)
{
return (v1.m_floats[0] * v2.m_floats[0] +
v1.m_floats[1] * v2.m_floats[1] +
v1.m_floats[2] * v2.m_floats[2]);
}
#endif //BT_USE_SSE
|